These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 667050)

  • 21. Effects of phenylarsine oxide on stimulation of glucose transport in rat skeletal muscle.
    Henriksen EJ; Holloszy JO
    Am J Physiol; 1990 Apr; 258(4 Pt 1):C648-53. PubMed ID: 2185640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA; Carter-Su C; Randles J
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3-O-methylglucose transport in internally dialysed giant axons of Loligo.
    Baker PF; Carruthers A
    J Physiol; 1981 Jul; 316():503-25. PubMed ID: 7320879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na+-sensitive component of 3-O-methylglucose uptake in frog skeletal muscle.
    Kitasato H; Marunaka Y
    J Membr Biol; 1985; 87(3):225-32. PubMed ID: 3878412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitogen-stimulated glucose transport in thymocytes. Possible role of Ca++ and antagonism by adenosine 3':5'-monophosphate.
    Whitesell RR; Johnson RA; Tarpley HL; Regen DM
    J Cell Biol; 1977 Feb; 72(2):456-69. PubMed ID: 188831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opposite effects of a beta-adrenergic agonist and a phosphodiesterase inhibitor on glucose transport in isolated human adipocytes: isoproterenol increases Vmax and IBMX increases Ks.
    Kashiwagi A; Foley JE
    Biochem Biophys Res Commun; 1982 Aug; 107(3):1151-7. PubMed ID: 6182880
    [No Abstract]   [Full Text] [Related]  

  • 27. Regulation of glucose transport in Ca2+-tolerant myocytes from adult rat heart.
    Bihler I; McNevin SR; Sawh PC
    Biochim Biophys Acta; 1985 Aug; 846(2):208-15. PubMed ID: 2411296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells.
    Randles J; Kimmich GA
    Am J Physiol; 1978 Mar; 234(3):C64-72. PubMed ID: 629334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of puromycin on sugar transport in isolated rat adipocytes.
    Kubo K; Foley JE
    Biochim Biophys Acta; 1985 Jul; 817(1):187-9. PubMed ID: 4005255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A specific sugar transport mechanism in smooth muscle and its regulation.
    Bihler I; Sawh PC; Elbrink J
    Can J Physiol Pharmacol; 1976 Jun; 54(3):254-61. PubMed ID: 953856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased permeability to sugar following muscle contraction. Inhibitors of protein synthesis prevent reversal of the increase in 3-methylglucose transport rate.
    Garthwaite SM; Holloszy JO
    J Biol Chem; 1982 May; 257(9):5008-12. PubMed ID: 7040390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of caffeine on sodium transport, membrane potential, mechanical tension and ultrastructure in barnacle muscle fibres.
    Bittar EE; Hift H; Huddart H; Tong E
    J Physiol; 1974 Oct; 242(1):1-34. PubMed ID: 4373569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulation of glucose transport in skeletal muscle by the sodium ionophore monensin.
    Bihler I; Sawh PC; Charles P
    Biochim Biophys Acta; 1985 Nov; 821(1):30-6. PubMed ID: 4063359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney.
    Rabito CA; Ausiello DA
    J Membr Biol; 1980; 54(1):31-8. PubMed ID: 7205941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potassium movements associated with amino acid and sugar transport in enterocytes isolated from rabbit jejunum.
    Brown PD; SepĂșlveda FV
    J Physiol; 1985 Jun; 363():271-85. PubMed ID: 3926992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. alpha- and beta-adrenergic receptors in regulation of ionic transport in frog cornea.
    Montoreano R; Candia OA; Cook P
    Am J Physiol; 1976 Jun; 230(6):1487-93. PubMed ID: 1084698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sugar transport in giant barnacle muscle fibres.
    Carruthers A
    J Physiol; 1983 Mar; 336():377-96. PubMed ID: 6875913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle.
    Clausen T; Flatman JA
    J Physiol; 1977 Sep; 270(2):383-414. PubMed ID: 198530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle.
    Clausen T; Elbrink J; Dahl-Hansen AB
    Biochim Biophys Acta; 1975 Jan; 375(2):292-308. PubMed ID: 1125213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+.
    Kimmich GA; Randles J
    Am J Physiol; 1988 Oct; 255(4 Pt 1):C486-94. PubMed ID: 3177623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.