These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 667087)
1. Changes in the lipid composition of ripening banana fruits and evidence for an associated increase in cell membrane permeability. Wade NL; Bishop DG Biochim Biophys Acta; 1978 Jun; 529(3):454-60. PubMed ID: 667087 [TBL] [Abstract][Full Text] [Related]
2. [Influence of linoleic acid (18:2 n-6) and alpha-linolenic acid (18:3 n-3) on the composition, permeability and fluidity of cardiac phospholipids in the rat: study using membrane models (liposomes)]. Rocquelin G; Yoyo N; Ducruet JM Reprod Nutr Dev (1980); 1986; 26(1A):97-112. PubMed ID: 2871601 [TBL] [Abstract][Full Text] [Related]
3. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity. Calder PC; Yaqoob P; Harvey DJ; Watts A; Newsholme EA Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):509-18. PubMed ID: 8002957 [TBL] [Abstract][Full Text] [Related]
4. The metabolism of membrane lipid participates in the occurrence of chilling injury in cold-stored banana fruit. Li Q; Lin H; Lin HT; Lin MS; Wang H; Wei W; Chen JY; Lu WJ; Shao XF; Fan ZQ Food Res Int; 2023 Nov; 173(Pt 2):113415. PubMed ID: 37803753 [TBL] [Abstract][Full Text] [Related]
5. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins. Peumans WJ; Proost P; Swennen RL; Van Damme EJ Plant Physiol; 2002 Oct; 130(2):1063-72. PubMed ID: 12376669 [TBL] [Abstract][Full Text] [Related]
6. The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: no effect of fatty acid composition. Brookes PS; Hulbert AJ; Brand MD Biochim Biophys Acta; 1997 Dec; 1330(2):157-64. PubMed ID: 9408168 [TBL] [Abstract][Full Text] [Related]
7. Lipid adaptation in liver mitochondrial membranes of carp acclimated to different environmental temperatures: phospholipid composition, fatty acid pattern and cholesterol content. Wodtke E Biochim Biophys Acta; 1978 May; 529(2):280-91. PubMed ID: 656457 [TBL] [Abstract][Full Text] [Related]
8. Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes. McMurchie EJ; Raison JK Biochim Biophys Acta; 1979 Jul; 554(2):364-74. PubMed ID: 226136 [TBL] [Abstract][Full Text] [Related]
9. The outer membrane of Proteus mirabilis. II. The extractable lipid fraction and electron-paramagnetic resonance analysis of the outer and cytoplasmic membranes. Rottem S; Hasin M; Razin S Biochim Biophys Acta; 1975 Feb; 375(3):395-405. PubMed ID: 164215 [TBL] [Abstract][Full Text] [Related]
10. Fatty acid composition of the milk lipids of Nepalese women: correlation between fatty acid composition of serum phospholipids and melting point. Glew RH; Huang YS; Vander Jagt TA; Chuang LT; Bhatt SK; Magnussen MA; VanderJagt DJ Prostaglandins Leukot Essent Fatty Acids; 2001 Sep; 65(3):147-56. PubMed ID: 11728165 [TBL] [Abstract][Full Text] [Related]
11. Globoside with spin-labelled fatty acid: bilayer lateral distribution and immune recognition. Mehlhorn IE; Barber KR; Grant CW Biochim Biophys Acta; 1988 Sep; 943(3):389-404. PubMed ID: 2843230 [TBL] [Abstract][Full Text] [Related]
12. Influence of thermal acclimation on membrane lipid composition of rainbow trout liver. Hazel JR Am J Physiol; 1979 Jan; 236(1):R91-101. PubMed ID: 434192 [TBL] [Abstract][Full Text] [Related]
13. Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipids of Proteus mirabilis. Rottem S; Markowitz O; Razin S Eur J Biochem; 1978 Apr; 85(2):445-50. PubMed ID: 206438 [TBL] [Abstract][Full Text] [Related]
14. Relation between membrane phospholipid composition, fluidity and function in mitochondria of rat brown adipose tissue. Effect of thermal adaptation and essential fatty acid deficiency. Senault C; Yazbeck J; Goubern M; Portet R; Vincent M; Gallay J Biochim Biophys Acta; 1990 Apr; 1023(2):283-9. PubMed ID: 2328250 [TBL] [Abstract][Full Text] [Related]
15. Determination of optimum harvest maturity and physico-chemical quality of Rastali banana (Musa AAB Rastali) during fruit ripening. Kheng TY; Ding P; Abdul Rahman NA J Sci Food Agric; 2012 Jan; 92(1):171-6. PubMed ID: 21780132 [TBL] [Abstract][Full Text] [Related]
16. Characterization of ethylene biosynthesis associated with ripening in banana fruit. Liu X; Shiomi S; Nakatsuka A; Kubo Y; Nakamura R; Inaba A Plant Physiol; 1999 Dec; 121(4):1257-66. PubMed ID: 10594112 [TBL] [Abstract][Full Text] [Related]
17. [Investigations on the fatty acid composition of lipids from Salmonella minnesota S and R forms (author's transl)]. Ferber E; Schlecht S; Fromme I Zentralbl Bakteriol Orig A; 1976 Nov; 236(2-3):275-87. PubMed ID: 1015016 [TBL] [Abstract][Full Text] [Related]
18. Effects of temperature and nutritional changes on the fatty acids of agmenellum quadruplicatum. Olson GJ; Ingram LO J Bacteriol; 1975 Oct; 124(1):373-9. PubMed ID: 809416 [TBL] [Abstract][Full Text] [Related]
19. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening. Zhang B; Shen JY; Wei WW; Xi WP; Xu CJ; Ferguson I; Chen K J Agric Food Chem; 2010 May; 58(10):6157-65. PubMed ID: 20415420 [TBL] [Abstract][Full Text] [Related]
20. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit. Inaba A; Liu X; Yokotani N; Yamane M; Lu WJ; Nakano R; Kubo Y J Exp Bot; 2007; 58(5):1047-57. PubMed ID: 17185740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]