BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 6671682)

  • 1. Pulsed nuclear magnetic resonance studies of water proton in subcellular fractions.
    Ranade SS; Shah S; Phadke RS; Kasturi SR
    Indian J Biochem Biophys; 1983 Jun; 20(3):180-2. PubMed ID: 6671682
    [No Abstract]   [Full Text] [Related]  

  • 2. Pulsed nuclear magnetic resonance studies on nuclear fractions of normal and malignant tissues.
    Ranade SS; Shah S; Phadke RS; Kasturi SR
    Physiol Chem Phys; 1979; 11(5):471-4. PubMed ID: 542506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing the water proton relaxation in nuclear fractions from tissues of normal and tumor-bearing animals.
    Modak SG; Chaudhary CA; Kasturi SR; Phadke RS; Shah S; Ranade SS
    Physiol Chem Phys; 1982; 14(1):41-5. PubMed ID: 7178242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Free and esterified cholesterol in the subcellular fractions of the rat liver].
    Finagin LK; Pechenova TM
    Ukr Biokhim Zh; 1971; 43(5):645-7. PubMed ID: 5154480
    [No Abstract]   [Full Text] [Related]  

  • 5. In vivo effect of chemically induced fibrosarcoma on copper metabolism of liver in mice.
    Chakravarty PK; Ghosh A
    Neoplasma; 1996; 43(4):271-4. PubMed ID: 8931753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for structuring of water in growing oocytes: an X-ray microanalysis and nuclear magnetic resonance study.
    Labadie DR; Hazlewood CF; Forster J; Cameron IL
    Physiol Chem Phys Med NMR; 1983; 15(3):201-8. PubMed ID: 6675023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of water proton spin-lattice relaxation times in normal and malignant tissues and their subcellular fractions--II.
    Shah SS; Ranade SS; Phadke RS; Kasturi SR
    Magn Reson Imaging; 1982; 1(3):155-64. PubMed ID: 6927203
    [No Abstract]   [Full Text] [Related]  

  • 8. [Effect of acute blood loss on the level of nucleic acids in the liver and its subcellular fractions].
    Polishchuk SN; Silakova AI; Laricheva NI
    Ukr Biokhim Zh; 1972; 44(5):583-8. PubMed ID: 4662624
    [No Abstract]   [Full Text] [Related]  

  • 9. Significance of water proton spin-lattice relaxation times in normal and malignant tissues and their subcellular fractions--I.
    Shah SS; Ranade SS; Phadke RS; Kasturi SR
    Magn Reson Imaging; 1982; 1(2):91-104. PubMed ID: 6927200
    [No Abstract]   [Full Text] [Related]  

  • 10. Nuclear magnetic resonance studies of cancer. IV. Correlation of water content with tissue relaxation times.
    Saryan LA; Hollis DP; Economou JS; Eggleston JC
    J Natl Cancer Inst; 1974 Feb; 52(2):599-602. PubMed ID: 4406036
    [No Abstract]   [Full Text] [Related]  

  • 11. Nuclear magnetic resonance spin-lattice times of normal and transformed cultured mammalian cells and of normal and neoplastic animal tissues.
    Raaphorst GP; Kruuv J
    Physiol Chem Phys; 1981; 13(3):251-8. PubMed ID: 7301946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water content and proton spin relaxation time for neoplastic and non-neoplastic tissues from mice and humans.
    Inch WR; McCredie JA; Knispel RR; Thompson RT; Pintar MM
    J Natl Cancer Inst; 1974 Feb; 52(2):353-6. PubMed ID: 4815998
    [No Abstract]   [Full Text] [Related]  

  • 13. Nuclear magnetic resonance studies in malignant & uninvolved human tissues.
    Reddy PN; Reddy BP
    Indian J Biochem Biophys; 1982 Apr; 19(2):127-9. PubMed ID: 7129503
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of mouse fibroblast (NIH3T3) and fibrosarcoma cell lines (WEHI-164 and MFS 8) using PMRS.
    Jayashree B; Visalakshi V; Rajalakshmi KR; Sukumaran MS; Moni MS; Rajkumar T; Deshmukh S
    Indian J Biochem Biophys; 1998 Apr; 35(2):108-14. PubMed ID: 9753870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo phenotyping of the ob/ob mouse by magnetic resonance imaging and 1H-magnetic resonance spectroscopy.
    Calderan L; Marzola P; Nicolato E; Fabene PF; Milanese C; Bernardi P; Giordano A; Cinti S; Sbarbati A
    Obesity (Silver Spring); 2006 Mar; 14(3):405-14. PubMed ID: 16648611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR proton longitudinal relaxation times in tissues of the tumour-bearing C3H mouse studied as a function of frequency.
    Escanye JM; Canet D; Robert J; Brondeau J
    Cancer Detect Prev; 1981; 4(1-4):261-5. PubMed ID: 7349784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear magnetic resonance relaxation and water contents in normal mouse and rat tissues and in cancer cells.
    Ling GN; Tucker M
    J Natl Cancer Inst; 1980 May; 64(5):1199-1207. PubMed ID: 6929018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal & malignant tissues--an investigation by pulsed nuclear magnetic resonance.
    Chaughule RS; Kasturi SR; Vijayaraghavan R
    Indian J Biochem Biophys; 1974 Sep; 11(3):256-8. PubMed ID: 4469255
    [No Abstract]   [Full Text] [Related]  

  • 19. Microtubule complexes correlated with growth rate and water proton relaxation times in human breast cancer cells.
    Beall PT; Brinkley BR; Chang DC; Hazlewood CF
    Cancer Res; 1982 Oct; 42(10):4124-30. PubMed ID: 7049356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor detection and nuclear magnetic resonance.
    Bovée W; Huisman P; Smidt J
    J Natl Cancer Inst; 1974 Feb; 52(2):595-7. PubMed ID: 4593143
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.