These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 667169)

  • 1. Studies on the energy-linked Ca2+ accumulation in pig heart mitochondria - role of Mg2'ons.
    Vial C; Otokore A; Goldschmidt D; Gautheron DC
    Biochimie; 1978; 60(2):159-69. PubMed ID: 667169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alloxan effects on mitochondria: study of oxygen consumption, fluxes of Mg2+, Ca2+, K+ and adenine nucleotides, membrane potential and volume change in vitro.
    Boquist L
    Diabetologia; 1984 Sep; 27(3):379-86. PubMed ID: 6500198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.
    Rugolo M; Siliprandi D; Siliprandi N; Toninello A
    Biochem J; 1981 Dec; 200(3):481-6. PubMed ID: 6177312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlated effluxes of adenine nucleotides, Mg2+ and Ca2+ induced in rat-liver mitochondria by external Ca2+ and phosphate.
    Zoccarato F; Rugolo M; Siliprandi D; Siliprandi N
    Eur J Biochem; 1981 Feb; 114(2):195-9. PubMed ID: 7215353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate-induced efflux of adenine nucleotides from rat-heart mitochondria: evaluation of the roles of the phosphate/hydroxyl exchanger and the dicarboxylate carrier.
    Wilson DE; Asimakis GK
    Biochim Biophys Acta; 1987 Oct; 893(3):470-9. PubMed ID: 3651445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiration-dependent uptake and extrusion of Mg2+ by isolated heart mitochondria.
    Brierley GP; Davis M; Jung DW
    Arch Biochem Biophys; 1987 Mar; 253(2):322-32. PubMed ID: 3566278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate-induced efflux of adenine nucleotides from heart mitochondria.
    Asimakis GK; Conti VR
    Am J Physiol; 1985 Nov; 249(5 Pt 2):H1009-16. PubMed ID: 4061664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efflux of magnesium and potassium ions from liver mitochondria induced by inorganic phosphate and by diamide.
    Siliprandi D; Toninello A; Zoccarato F; Rugolo M; Siliprandi N
    J Bioenerg Biomembr; 1978 Apr; 10(1-2):1-11. PubMed ID: 95507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net adenine nucleotide transport in rat kidney mitochondria.
    Hagen T; Joyal JL; Henke W; Aprille JR
    Arch Biochem Biophys; 1993 Jun; 303(2):195-207. PubMed ID: 8512308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria.
    Asimakis GK; Sordahl LA
    Am J Physiol; 1981 Nov; 241(5):H672-8. PubMed ID: 6272586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of mitochondrial Ca2+ uptake by mersalyl.
    Chavez E; Holguin JA; Zazueta C; Bravo C
    Int J Biochem; 1989; 21(11):1241-4. PubMed ID: 2482204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium efflux parallel to total phosphate retention in rat liver mitochondria.
    Rigoni F; Panato L; Deana R
    Int J Biochem; 1984; 16(11):1121-5. PubMed ID: 6084602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents and by thyroxine. The relationship to adenosine diphosphate retention and to mitochondrial permeability.
    Harris EJ; Al-Shaikhaly M; Baum H
    Biochem J; 1979 Aug; 182(2):455-64. PubMed ID: 41519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria.
    Denton RM; McCormack JG; Edgell NJ
    Biochem J; 1980 Jul; 190(1):107-17. PubMed ID: 6160850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport mechanism for calcium and phosphate in ram spermatozoa.
    Zarca A; Rubinstein S; Breitbart H
    Biochim Biophys Acta; 1988 Oct; 944(3):351-8. PubMed ID: 2460139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D; Boyer PD
    Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria.
    Fiskum G; Cockrell RS
    Arch Biochem Biophys; 1985 Aug; 240(2):723-33. PubMed ID: 2411223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms.
    Haumann J; Dash RK; Stowe DF; Boelens AD; Beard DA; Camara AK
    Biophys J; 2010 Aug; 99(4):997-1006. PubMed ID: 20712982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria.
    Hutson SM; Pfeiffer DR; Lardy HA
    J Biol Chem; 1976 Sep; 251(17):5251-8. PubMed ID: 783158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid efflux of Ca2+ from heart mitochondria in the presence of inorganic pyrophosphate.
    Vercesi A; Lehninger AL
    Biochem Biophys Res Commun; 1984 Jan; 118(1):147-53. PubMed ID: 6199026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.