These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 6672159)

  • 21. The morphology of the demineralized layer in primed dentin.
    Titley K; Chernecky R; Maric B; Valiquette N; Smith D
    Am J Dent; 1994 Feb; 7(1):22-6. PubMed ID: 9115674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips.
    Holmes DF; Graham HK; Kadler KE
    J Mol Biol; 1998 Nov; 283(5):1049-58. PubMed ID: 9799643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and distribution of type VI collagen in tendon fibrocartilages.
    Felisbino SL; Carvalho HF
    J Submicrosc Cytol Pathol; 1999 Apr; 31(2):187-95. PubMed ID: 10457605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction.
    Goh KL; Holmes DF; Lu HY; Richardson S; Kadler KE; Purslow PP; Wess TJ
    J Biomech Eng; 2008 Apr; 130(2):021011. PubMed ID: 18412498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative analysis of the microstructure of the hamstring tendons: an electron microscopic, histologic, and morphologic study.
    Hadjicostas PT; Soucacos PN; Koleganova N; Piecha G; Krohmer G; Berger I
    J Surg Orthop Adv; 2008; 17(3):153-8. PubMed ID: 18851799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction.
    Graham HK; Holmes DF; Watson RB; Kadler KE
    J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Ultrastructure of collagen fibers in the sclera].
    Marchini M; Raspanti M; Leonardi L; Morocutti M
    Boll Soc Ital Biol Sper; 1980 Dec; 56(24):2569-74. PubMed ID: 7470304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features--a comparative study in an ovine model.
    Rumian AP; Wallace AL; Birch HL
    J Orthop Res; 2007 Apr; 25(4):458-64. PubMed ID: 17205554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variations in collagen fibril structure in tendons.
    Brodsky B; Eikenberry EF; Belbruno KC; Sterling K
    Biopolymers; 1982 May; 21(5):935-51. PubMed ID: 7082771
    [No Abstract]   [Full Text] [Related]  

  • 31. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon.
    Provenzano PP; Vanderby R
    Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter.
    Birk DE; Mayne R
    Eur J Cell Biol; 1997 Apr; 72(4):352-61. PubMed ID: 9127735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model.
    Puxkandl R; Zizak I; Paris O; Keckes J; Tesch W; Bernstorff S; Purslow P; Fratzl P
    Philos Trans R Soc Lond B Biol Sci; 2002 Feb; 357(1418):191-7. PubMed ID: 11911776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging.
    Landis WJ; Hodgens KJ; Song MJ; Arena J; Kiyonaga S; Marko M; Owen C; McEwen BF
    J Struct Biol; 1996; 117(1):24-35. PubMed ID: 8776885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical overload decreases the thermal stability of collagen in an in vitro tensile overload tendon model.
    Willett TL; Labow RS; Lee JM
    J Orthop Res; 2008 Dec; 26(12):1605-10. PubMed ID: 18524005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semitendinosus regrowth: biochemical, ultrastructural, and physiological characterization of the regenerate tendon.
    Gill SS; Turner MA; Battaglia TC; Leis HT; Balian G; Miller MD
    Am J Sports Med; 2004; 32(5):1173-81. PubMed ID: 15262639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crimp as part of a helical structure.
    Vidal Bde C
    C R Acad Sci III; 1995 Feb; 318(2):173-8. PubMed ID: 7757811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Morphological changes of collagen fibrils during the formation of autogenous tendon induced by human hair keratin artificial tendon].
    Wang QW; Piao YJ; Wang WS; Lu YM; Fu WY
    Di Yi Jun Yi Da Xue Xue Bao; 2003 Jun; 23(6):569-71. PubMed ID: 12810378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Freeze-fracture cytochemistry in cell biology.
    Severs NJ; Robenek H
    Methods Cell Biol; 2008; 88():181-204. PubMed ID: 18617035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.