These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6673226)

  • 1. Low stress shear-induced hemolysis in capillary flow.
    Laugel JF; Beissinger RL
    Trans Am Soc Artif Intern Organs; 1983; 29():158-62. PubMed ID: 6673226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical degradation of polyacrylamide solutions as a model for flow induced blood damage in artificial organs.
    Pohl M; Wendt MO; Koch B; Vlastos GA
    Biorheology; 2000; 37(4):313-24. PubMed ID: 11145077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obtaining the shear stress versus shear rate relationship and yield stress of blood from capillary viscometry data by Tikhonov regularization.
    Yeow YL; Leong YK; Wickramasinghe SR; Han B
    Biotechnol Prog; 2002; 18(4):879-84. PubMed ID: 12153325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies.
    Grigioni M; Daniele C; Morbiducci U; D'Avenio G; Di Benedetto G; Barbaro V
    Artif Organs; 2004 May; 28(5):467-75. PubMed ID: 15113341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pulsatile shear stress on signaling mechanisms controlling nitric oxide production, endothelial nitric oxide synthase phosphorylation, and expression in ovine fetoplacental artery endothelial cells.
    Li Y; Zheng J; Bird IM; Magness RR
    Endothelium; 2005; 12(1-2):21-39. PubMed ID: 16036314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leakage flow at mechanical heart valve prostheses: improved washout or increased blood damage?
    Steegers A; Paul R; Reul H; Rau G
    J Heart Valve Dis; 1999 May; 8(3):312-23. PubMed ID: 10399668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ; Dooley PN
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In vitro study of regulation of shear stress on antithrombogenic potentials of endothelialized polyurethane small diameter artificial blood vessel].
    Yang Z; Tao J; Wang J; Tu C; Feng L; Pan S; Ma H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):621-5. PubMed ID: 18693444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical estimation of blood damage in artificial organs.
    Goubergrits L; Affeld K
    Artif Organs; 2004 May; 28(5):499-507. PubMed ID: 15113346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermittent stops of shear reduce the mechanical damage of red blood cells.
    Mizunuma H; Sakai S
    Artif Organs; 2007 Jun; 31(6):472-5. PubMed ID: 17537060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in surface roughness of erythrocytes due to shear stress: atomic force microscopic visualization of the surface microstructure.
    Ohta Y; Otsuka C; Okamoto H
    J Artif Organs; 2003; 6(2):101-5. PubMed ID: 14598110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose depletion enhances sensitivity to shear stress-induced mechanical damage in red blood cells by rotary blood pumps.
    Sakota D; Sakamoto R; Yokoyama N; Kobayashi M; Takatani S
    Artif Organs; 2009 Sep; 33(9):733-9. PubMed ID: 19775265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolysis resulting from surface roughness under shear flow conditions using a rotational shear stressor.
    Maruyama O; Nishida M; Yamane T; Oshima I; Adachi Y; Masuzawa T
    Artif Organs; 2006 May; 30(5):365-70. PubMed ID: 16683954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pulsatile shear stress on nitric oxide production and endothelial cell nitric oxide synthase expression by ovine fetoplacental artery endothelial cells.
    Li Y; Zheng J; Bird IM; Magness RR
    Biol Reprod; 2003 Sep; 69(3):1053-9. PubMed ID: 12773424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall shear stress in backward-facing step flow of a red blood cell suspension.
    Gijsen FJ; van de Vosse FN; Janssen JD
    Biorheology; 1998; 35(4-5):263-79. PubMed ID: 10474654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium-dependent, shear-induced vasodilation is rate-sensitive.
    Butler PJ; Weinbaum S; Chien S; Lemons DE
    Microcirculation; 2000 Feb; 7(1):53-65. PubMed ID: 10708337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.