These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 6673234)

  • 21. In vivo biocompatibility studies. II. Biomer: preliminary cell adhesion and surface characterization studies.
    Marchant RE; Anderson JM; Phua K; Hiltner A
    J Biomed Mater Res; 1984 Mar; 18(3):309-15. PubMed ID: 6715395
    [No Abstract]   [Full Text] [Related]  

  • 22. [Tissue reaction to implanted polyurethane designed for parts of the artificial heart].
    Staniszewska-Kuś J; Paluch D; Krzemień-Dabrowska A; Zywicka B; Solski L
    Polim Med; 1995; 25(3-4):3-18. PubMed ID: 8610064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Insight into surface structure and hemocompatibility of fluorinated poly(ether urethane)s and poly(ether urethane)s blends].
    Tan H; Li J; Xie X; Guo M; Fu Q; Zhong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):566-9. PubMed ID: 15357433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Phosphatase activity and level of cyclic nucleotides upon implantation of polyurethane with lactose in the main chain].
    Konoplyts'ka OL; Burenko GV; Sniegir'ov OI; Narazhaĭko LF
    Ukr Biokhim Zh (1978); 1991; 63(3):97-100. PubMed ID: 1926594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro long-term perfusion of different materials for biliary endoprostheses.
    Lammer J; Stöffler G; Petek WW; Höfler H
    Invest Radiol; 1986 Apr; 21(4):329-31. PubMed ID: 3700046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of oligomers content and surface morphology on foreign-body tumorigenesis with polyetherurethanes: two years subcutaneous implantation study in rats.
    Nakamura A; Kojima S; Isama K; Umemura T; Kawasaki Y; Takada K; Tsuda M; Kurokawa Y
    J Long Term Eff Med Implants; 1995; 5(4):263-73. PubMed ID: 10172704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Medical applications of polymeric materials.
    Bruck SD
    Med Prog Technol; 1982; 9(1):1-16. PubMed ID: 6752684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ionic interactions of polyurethanes.
    Thoma RJ; Tan FR; Phillips RE
    J Biomater Appl; 1988 Oct; 3(2):180-206. PubMed ID: 3060585
    [No Abstract]   [Full Text] [Related]  

  • 29. Polyurethane foams: effects of specimen size when determining cushioning stiffness.
    Todd BA; Smith SL; Vongpaseuth T
    J Rehabil Res Dev; 1998 Jun; 35(2):219-24. PubMed ID: 9651894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Invited commentary.
    Dohmen PM
    Ann Thorac Surg; 2007 Feb; 83(2):654. PubMed ID: 17258003
    [No Abstract]   [Full Text] [Related]  

  • 31. [Biocompatible fluids for peritoneal dialysis: do they have a clinical impact?].
    Feriani M
    G Ital Nefrol; 2007; 24(4):320-6. PubMed ID: 17659503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo biostability of polyether polyurethanes with fluoropolymer surface modifying endgroups: resistance to biologic oxidation and stress cracking.
    Ward B; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Dec; 79(4):827-35. PubMed ID: 16886223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane.
    Yu B; Long N; Moussy Y; Moussy F
    Biosens Bioelectron; 2006 Jun; 21(12):2275-82. PubMed ID: 16330201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of material surface chemistry in implant device calcification: a hypothesis.
    Thoma RJ; Phillips RE
    J Heart Valve Dis; 1995 May; 4(3):214-21. PubMed ID: 7655678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking.
    Ebert M; Ward B; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2005 Oct; 75(1):175-84. PubMed ID: 16041797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomedical applications of polyurethanes: implications of failure mechanisms.
    Phillips RE; Smith MC; Thoma RJ
    J Biomater Appl; 1988 Oct; 3(2):207-27. PubMed ID: 3060586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TDA release from polyurethane covered breast implants may be a problem.
    Batich CD
    J Biomed Mater Res; 1993 Sep; 27(9):1209. PubMed ID: 8126019
    [No Abstract]   [Full Text] [Related]  

  • 38. A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products.
    van Minnen B; Stegenga B; van Leeuwen MB; van Kooten TG; Bos RR
    J Biomed Mater Res A; 2006 Feb; 76(2):377-85. PubMed ID: 16270347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications.
    Wang DA; Feng LX; Ji J; Sun YH; Zheng XX; Elisseeff JH
    J Biomed Mater Res A; 2003 Jun; 65(4):498-510. PubMed ID: 12761841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular coating of the left ventricular assist device textured polyurethane membrane reduces adhesion of Staphylococcus aureus.
    Asai T; Lee MH; Arrecubieta C; von Bayern MP; Cespedes CA; Baron HM; Cadeiras M; Sakaguchi T; Marboe CC; Naka Y; Deng MC; Lowy FD
    J Thorac Cardiovasc Surg; 2007 May; 133(5):1147-53. PubMed ID: 17467422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.