These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 6673753)

  • 21. A possible structural basis for the different modes of action of neurotoxins and cardiotoxins from snake venoms.
    Lauterwein J; Wüthrich K
    FEBS Lett; 1978 Sep; 93(2):181-4. PubMed ID: 710576
    [No Abstract]   [Full Text] [Related]  

  • 22. A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain alpha-neurotoxins and alpha-conotoxins.
    Mordvintsev DY; Polyak YL; Levtsova OV; Tourleigh YV; Kasheverov IE; Shaitan KV; Utkin YN; Tsetlin VI
    Comput Biol Chem; 2005 Dec; 29(6):398-411. PubMed ID: 16290328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Snake postsynaptic neurotoxins: gene structure, phylogeny and applications in research and therapy.
    Phui Yee JS; Nanling G; Afifiyan F; Donghui M; Siew Lay P; Armugam A; Jeyaseelan K
    Biochimie; 2004 Feb; 86(2):137-49. PubMed ID: 15016453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An nmr conformational analysis of a synthetic peptide Cn2(1-15)NH2-S-S-acetyl-Cn2(52-66)NH2 from the New World Centruroides noxius 2 (Cn2) scorpion toxin: comparison of the structure with those of the Centruroides scorpion toxins.
    Yamamoto H; Sejbal J; York E; Stewart JM; Possani LD; Kotovych G
    Biopolymers; 1999 Apr; 49(4):277-86. PubMed ID: 10079767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Snake venom disintegrins: evolution of structure and function.
    Calvete JJ; Marcinkiewicz C; Monleón D; Esteve V; Celda B; Juárez P; Sanz L
    Toxicon; 2005 Jun; 45(8):1063-74. PubMed ID: 15922775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast high-resolution protein structure determination by using unassigned NMR data.
    Korukottu J; Bayrhuber M; Montaville P; Vijayan V; Jung YS; Becker S; Zweckstetter M
    Angew Chem Int Ed Engl; 2007; 46(7):1176-9. PubMed ID: 17205584
    [No Abstract]   [Full Text] [Related]  

  • 27. Snake venom C-type lectins interacting with platelet receptors. Structure-function relationships and effects on haemostasis.
    Lu Q; Navdaev A; Clemetson JM; Clemetson KJ
    Toxicon; 2005 Jun; 45(8):1089-98. PubMed ID: 15876445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equilibrium NMR studies of unfolded and partially folded proteins.
    Dyson HJ; Wright PE
    Nat Struct Biol; 1998 Jul; 5 Suppl():499-503. PubMed ID: 9665178
    [No Abstract]   [Full Text] [Related]  

  • 29. NMR analysis of viral protein structures.
    Dingley AJ; Lorenzen I; Grötzinger J
    Methods Mol Biol; 2008; 451():441-62. PubMed ID: 18370273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation of intermediates in the refolding of reduced erabutoxin b by analytical isoelectric focusing in layers of polyacrylamide gel.
    Bouet F; Ménez A; Hider RC; Fromageot P
    Biochem J; 1982 Mar; 201(3):495-9. PubMed ID: 7092808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of refolding patterns of erabutoxin b and cardiotoxin 3.10.2 from snake venom.
    Agbaji AS
    Indian J Biochem Biophys; 1994 Feb; 31(1):20-3. PubMed ID: 8076968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular moulds with multiple missions: functional sites in three-finger toxins.
    Kini RM
    Clin Exp Pharmacol Physiol; 2002 Sep; 29(9):815-22. PubMed ID: 12165048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer of a beta-hairpin from the functional site of snake curaremimetic toxins to the alpha/beta scaffold of scorpion toxins: three-dimensional solution structure of the chimeric protein.
    Zinn-Justin S; Guenneugues M; Drakopoulou E; Gilquin B; Vita C; Ménez A
    Biochemistry; 1996 Jul; 35(26):8535-43. PubMed ID: 8679614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Nuclear magnetic resonance method--high resolution NMR].
    Inagaki F
    Tanpakushitsu Kakusan Koso; 1985 Sep; (28):284-7. PubMed ID: 4081050
    [No Abstract]   [Full Text] [Related]  

  • 35. Nuclear magnetic resonance-based modeling and refinement of protein three-dimensional structures and their complexes.
    Fuentes G; van Dijk AD; Bonvin AM
    Methods Mol Biol; 2008; 443():229-55. PubMed ID: 18446291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calculating protein structures from NMR data.
    Güntert P
    Methods Mol Biol; 1997; 60():157-94. PubMed ID: 9276248
    [No Abstract]   [Full Text] [Related]  

  • 37. NMR spectroscopy of RNA.
    Fürtig B; Richter C; Wöhnert J; Schwalbe H
    Chembiochem; 2003 Oct; 4(10):936-62. PubMed ID: 14523911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR structure of the 18 kDa protein CC1736 from Caulobacter crescentus identifies a member of the START domain superfamily and suggests residues mediating substrate specificity.
    Shen Y; Goldsmith-Fischman S; Atreya HS; Acton T; Ma L; Xiao R; Honig B; Montelione GT; Szyperski T
    Proteins; 2005 Feb; 58(3):747-50. PubMed ID: 15616961
    [No Abstract]   [Full Text] [Related]  

  • 39. Kurt Wüthrich, the ETH Zürich, and the development of NMR spectroscopy for the investigation of structure, dynamics, and folding of proteins.
    Schwalbe H
    Chembiochem; 2003 Mar; 4(2-3):135-42. PubMed ID: 12616625
    [No Abstract]   [Full Text] [Related]  

  • 40. NMR residual dipolar couplings as probes of biomolecular dynamics.
    Tolman JR; Ruan K
    Chem Rev; 2006 May; 106(5):1720-36. PubMed ID: 16683751
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.