These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6673998)

  • 1. Motor representation in the rostral portion of the cat corpus callosum as evidenced by microstimulation.
    Spidalieri G; Guandalini P
    Exp Brain Res; 1983; 53(1):59-70. PubMed ID: 6673998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Motor responses produced by microstimulation of the rostral region of the corpus callosum].
    Guandalini P; Spidalieri G
    Boll Soc Ital Biol Sper; 1983 May; 59(5):704-9. PubMed ID: 6882569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor responses mediated by orthodromic and antidromic activation of the rostral portion of the cat corpus callosum.
    Spidalieri G; Guandalini P; Franchi G
    Exp Brain Res; 1986; 64(1):133-42. PubMed ID: 3770106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional development of input-output relationships in the rostral portion of the corpus callosum in the kitten.
    Guandalini P; Franchi G; Semenza P; Spidalieri G
    Exp Brain Res; 1989; 74(3):453-62. PubMed ID: 2707321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys.
    Gould HJ; Cusick CG; Pons TP; Kaas JH
    J Comp Neurol; 1986 May; 247(3):297-325. PubMed ID: 3722441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatic receptive-field properties of single fibres in the rostral portion of the corpus callosum in awake cats.
    Spidalieri G; Franchi G; Guandalini P
    Exp Brain Res; 1985; 58(1):75-81. PubMed ID: 3987853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movement representation in the dorsal and ventral premotor areas of owl monkeys: a microstimulation study.
    Preuss TM; Stepniewska I; Kaas JH
    J Comp Neurol; 1996 Aug; 371(4):649-76. PubMed ID: 8841916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low threshold unilateral and bilateral facial movements evoked by motor cortex stimulation in cats.
    Guandalini P; Franchi G; Spidalieri G
    Brain Res; 1990 Feb; 508(2):273-82. PubMed ID: 2306618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal development of the motor representation in primary motor cortex.
    Chakrabarty S; Martin JH
    J Neurophysiol; 2000 Nov; 84(5):2582-94. PubMed ID: 11068000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of the primate face motor cortex as revealed by intracortical microstimulation and electrophysiological identification of afferent inputs and corticobulbar projections.
    Huang CS; Sirisko MA; Hiraba H; Murray GM; Sessle BJ
    J Neurophysiol; 1988 Mar; 59(3):796-818. PubMed ID: 2835448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevance of the callosal transfer in defining the peripheral reactivity of somesthetic cortical neurones.
    Innocenti GM; Manzoni T; Spidalieri G
    Arch Ital Biol; 1973 Jun; 111(2):187-221. PubMed ID: 18843823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-threshold motor effects produced by stimulation of the facial area of the fifth somatosensory cortex in the cat.
    Mori A; Yamaguchi Y; Kikuta R; Furukawa T; Sumino R
    Brain Res; 1993 Jan; 602(1):143-7. PubMed ID: 8448652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatosensory receptive fields of fibres in the rostral corpus callosum of the cat.
    Guillemot JP; Lepore F; Prevost L; Richer L; Guilbert M
    Brain Res; 1988 Feb; 441(1-2):221-32. PubMed ID: 3359233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Functional properties of efferent zones of the motor cortex which project to ipsilateral and contralateral face muscles].
    Franchi G; Guandalini P; Spidalieri G
    Boll Soc Ital Biol Sper; 1989 Dec; 65(12):1193-9. PubMed ID: 2627335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of section of the corpus callosum and lesions of the motor cortex on the motor response induced by microstimulation of the callosal motor region].
    Franchi G; Guandalini P; Spidalieri G
    Boll Soc Ital Biol Sper; 1986 Mar; 62(3):391-7. PubMed ID: 3718755
    [No Abstract]   [Full Text] [Related]  

  • 16. Postnatal development of differential projections from the caudal and rostral motor cortex subregions.
    Li Q; Martin JH
    Exp Brain Res; 2000 Sep; 134(2):187-98. PubMed ID: 11037285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional significance of projection from the cerebellar nuclei to the motor cortex in the cat.
    Asanuma H; Hunsperger RW
    Brain Res; 1975 Nov; 98(1):73-92. PubMed ID: 1175060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstimulation of primate motor thalamus: somatotopic organization and differential distribution of evoked motor responses among subnuclei.
    Vitek JL; Ashe J; DeLong MR; Kaneoke Y
    J Neurophysiol; 1996 Jun; 75(6):2486-95. PubMed ID: 8793758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones.
    Alexander GE; DeLong MR
    J Neurophysiol; 1985 Jun; 53(6):1401-16. PubMed ID: 4009226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Callosal transfer of impulses originating from superficial and deep nerves of the cat forelimb.
    Caminiti R; Manzoni T; Michelini S; Spidalieri G
    Arch Ital Biol; 1976 Jun; 114(2):155-77. PubMed ID: 1020974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.