BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6675701)

  • 1. The energy metabolism of pyruvate kinase deficient red blood cells.
    Jacobasch G; Holzhütter H; Bisdorf A
    Biomed Biochim Acta; 1983; 42(11-12):S268-72. PubMed ID: 6675701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Energy metabolism of erythrocytes in pyruvate kinase enzymopathies].
    Jacobasch G; Grieger M; Gerth C; Bier K
    Acta Biol Med Ger; 1977; 36(5-6):717-30. PubMed ID: 602578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modelling of metabolic pathways affected by an enzyme deficiency. A mathematical model of glycolysis in normal and pyruvate-kinase-deficient red blood cells.
    Holzhütter HG; Jacobasch G; Bisdorff A
    Eur J Biochem; 1985 May; 149(1):101-11. PubMed ID: 3996397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and cellular regulation of pyruvate kinase in red blood cells.
    Jacobasch G; Holzhütter H
    Haematologia (Budap); 1984; 17(2):259-66. PubMed ID: 6534831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modelling of metabolic pathways affected by an enzyme deficiency.
    Holzhütter HG; Schuster R; Buckwitz D; Jacobasch G
    Biomed Biochim Acta; 1990; 49(8-9):791-800. PubMed ID: 2082922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of energy and redox metabolism of G6PD-deficient erythrocytes.
    Schuster R; Jacobasch G; Holzhütter H
    Biomed Biochim Acta; 1990; 49(2-3):S160-5. PubMed ID: 2386502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary "in vivo" state and of time dependent variations under blood preservation conditions.
    Werner A; Heinrich R
    Biomed Biochim Acta; 1985; 44(2):185-212. PubMed ID: 4004830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical models of metabolic systems: general principles and control of glycolysis and membrane transport in erythrocytes.
    Heinrich R
    Biomed Biochim Acta; 1985; 44(6):913-27. PubMed ID: 2931078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors].
    Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM
    Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion].
    Schauer M; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of exogenous adenine in a pyruvate kinase-deficient patient.
    Lappin TR; Elder GE; Savage GA; Bridges JM
    Scand J Clin Lab Invest; 1983 Apr; 43(2):111-8. PubMed ID: 6612220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of pyruvate kinase of chicken erythrocytes.
    Jacobasch G; Holzhütter HG; Gerth C
    Biomed Biochim Acta; 1983; 42(11-12):S289-90. PubMed ID: 6675705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic regulation and mathematical models.
    Heinrich R; Rapoport SM; Rapoport TA
    Prog Biophys Mol Biol; 1977; 32(1):1-82. PubMed ID: 343173
    [No Abstract]   [Full Text] [Related]  

  • 14. [Mathematical model of carbohydrate energy metabolism. Interaction between glycolysis, the Krebs cycle and the H-transporting shuttles at varying ATPase load].
    Dynnik VV; Khaĭnrikh R; Sel'kov EE
    Biokhimiia; 1980 May; 45(5):771-82. PubMed ID: 6445762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of enzymopathies in the human red blood cells by constraint-based stoichiometric modeling approaches.
    Durmuş Tekir S; Cakir T; Ulgen KO
    Comput Biol Chem; 2006 Oct; 30(5):327-38. PubMed ID: 16987707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Regulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters].
    Kholodenko BN; Dibrov BF; Zhabotinskiĭ AM
    Biofizika; 1981; 26(3):501-6. PubMed ID: 6455164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments].
    Schauer M; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1981; 40(12):1659-82. PubMed ID: 6285649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes.
    Rapoport TA; Heinrich R; Rapoport SM
    Biochem J; 1976 Feb; 154(2):449-69. PubMed ID: 132930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Identification of pyruvate kinase variants from red blood cells using trypsinization and electrophoresis].
    Tzanev D; Schulz J; Jacobasch G; Richter A; Gerth C
    Acta Biol Med Ger; 1980; 39(7):745-61. PubMed ID: 7211063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy requirements of erythrocytes under mechanical stress.
    Kodícek M; Mircevová L; Marík T
    Biomed Biochim Acta; 1987; 46(2-3):S103-7. PubMed ID: 3593290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.