These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6675719)

  • 1. Ionic states and metabolism of erythrocytes.
    Glaser R; Heinrich H; Brumen M; Svetina S
    Biomed Biochim Acta; 1983; 42(11-12):S77-80. PubMed ID: 6675719
    [No Abstract]   [Full Text] [Related]  

  • 2. Mathematical models of metabolic systems: general principles and control of glycolysis and membrane transport in erythrocytes.
    Heinrich R
    Biomed Biochim Acta; 1985; 44(6):913-27. PubMed ID: 2931078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Metabolic processes in the erythrocytes in disordered kidney function].
    Shepotinovskiĭ VI
    Urol Nefrol (Mosk); 1983; (3):62-6. PubMed ID: 6224339
    [No Abstract]   [Full Text] [Related]  

  • 4. [Uric acid transport by human erythrocyte membrane: role of intraerythrocyte metabolism].
    Lucas-Héron B; Fontenaille C; Ginet J
    C R Seances Soc Biol Fil; 1977; 171(3):649-55. PubMed ID: 144006
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization.
    Ataullakhanov FI; Vitvitsky VM; Zhabotinsky AM; Pichugin AV; Kholodenko BN; Ehrlich LI
    Acta Biol Med Ger; 1981; 40(7-8):991-7. PubMed ID: 7331640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classic electrolyte distribution and transport--mathematical principles.
    DeLand EC
    Adv Pathobiol; 1975; (1):21-8. PubMed ID: 1235236
    [No Abstract]   [Full Text] [Related]  

  • 7. Actions of hyperbaric elemental gases on electrolyte transport in the human erythrocyte.
    Van Nice PS; Galey WR
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Aug; 49(2):204-10. PubMed ID: 7400004
    [No Abstract]   [Full Text] [Related]  

  • 8. [Water soluble proteins in human erythrocyte membranes. Difference in composition and phosphorylation depending on extraction conditions].
    Lecomte MC; Galand C; Boivin P
    Nouv Rev Fr Hematol (1978); 1982; 24(6):349-58. PubMed ID: 7167384
    [No Abstract]   [Full Text] [Related]  

  • 9. [Chlorine ion content and the ionic permeability of the erythrocyte membranes of healthy persons and of periodontosis patients].
    Orlova OL; Peshkova LV; Dakhnova AA
    Fiziol Zh (1978); 1983; 29(1):119-22. PubMed ID: 6832417
    [No Abstract]   [Full Text] [Related]  

  • 10. [Red cell biochemistry: membrane properties and energy metabolism of red cells].
    Fujii H
    Nihon Rinsho; 1991 Mar; 49(3):508-11. PubMed ID: 2041173
    [No Abstract]   [Full Text] [Related]  

  • 11. Stimulation of eryptosis by aluminium ions.
    Niemoeller OM; Kiedaisch V; Dreischer P; Wieder T; Lang F
    Toxicol Appl Pharmacol; 2006 Dec; 217(2):168-75. PubMed ID: 17055015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of hydrogen-ion concentration on the rate of glycolysis of human erythrocytes in oxybiosis and anoxybiosis].
    Pescarmona GP; Bosia A; Arese P
    Boll Soc Ital Biol Sper; 1969 May; 45(9):558-60. PubMed ID: 5399880
    [No Abstract]   [Full Text] [Related]  

  • 13. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion].
    Schauer M; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Binding of phenyldicarbaundecaborane with proteins, membrane fragments, and whole cells].
    Loginov VA
    Biokhimiia; 1993 Mar; 58(3):480-4. PubMed ID: 8485233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The role of potassium and chlorine ions in the gas-transport function of the erythrocytes].
    Pieshkova LV
    Fiziol Zh (1994); 1997; 43(1-2):40-9. PubMed ID: 9221118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding of fibrinogen and fibrinogen degradation products to the erythrocyte membrane and its relationship to haemorheology.
    Rampling MW
    Acta Biol Med Ger; 1981; 40(4-5):373-8. PubMed ID: 7315086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Ca2+ on erythrocyte membrane skeleton-bound phosphofructokinase, ATP levels, and hemolysis.
    Assouline-Cohen M; Beitner R
    Mol Genet Metab; 1999 Jan; 66(1):56-61. PubMed ID: 9973548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A possible role of adenylate metabolism in human erythrocytes: simple mathematical model.
    Ataullakhanov FI; Komarova SV; Vitvitsky VM
    J Theor Biol; 1996 Mar; 179(1):75-86. PubMed ID: 8733433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animal models of human erythrocyte metabolism.
    Smith JE
    Prog Clin Biol Res; 1982; 94():421-33. PubMed ID: 7122623
    [No Abstract]   [Full Text] [Related]  

  • 20. Energy and heat production of human erythrocytes in different media.
    de Verdier CH
    Acta Biol Med Ger; 1981; 40(4-5):699-702. PubMed ID: 7315117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.