These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 6676633)

  • 1. [Analysis of intraluminal flow velocity profile in peripheral arterial reconstruction--with special reference to the effect of abnormal flow wave on postoperative thrombosis formation].
    Kamori M
    Nihon Geka Gakkai Zasshi; 1983 Jul; 84(7):623-37. PubMed ID: 6676633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraluminal velocity profile analyzed from flow waveforms.
    Inokuchi K; Kusaba A; Kamori M; Kina M; Okadome K
    Surgery; 1982 Dec; 92(6):1006-15. PubMed ID: 6216618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The significance of the medical research study: hemodynamic and pathophysiologic characteristics in peripheral arterial reconstruction].
    Kusaba A
    Nihon Geka Gakkai Zasshi; 1997 Aug; 98(8):697-9. PubMed ID: 9330385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Coronary blood flow velocities in humans evaluated during cardiac surgery using a 20 MHz 80 + 1 channel ultrasound pulsed Doppler velocimeter].
    Kajiya F; Tsujioka K; Tadaoka S
    J Cardiogr; 1986 Jun; 16(2):279-90. PubMed ID: 2953822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pulsatile blood flow on thrombosis potential with a step wall transition.
    Corbett SC; Ajdari A; Coskun AU; Nayeb-Hashemi H
    ASAIO J; 2010; 56(4):290-5. PubMed ID: 20508499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of pulsatile blood flow in constricted bifurcated arteries with vorticity-stream function approach.
    Chakravarty S; Sen S
    J Med Eng Technol; 2008; 32(1):10-22. PubMed ID: 18183516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N; Ando J; Chen X; Hisada T
    J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The predictive value of brachial-ankle pulse wave velocity in coronary atherosclerosis and peripheral artery diseases in urban Chinese patients.
    Xu Y; Wu Y; Li J; Ma W; Guo X; Luo Y; Hu D
    Hypertens Res; 2008 Jun; 31(6):1079-85. PubMed ID: 18716354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Doppler flow velocity wave forms of the maternal uterine artery and fetal umbilical artery in normal pregnancy and pregnancy induced hypertension].
    Yang CS
    Zhonghua Fu Chan Ke Za Zhi; 1989 Sep; 24(5):261-4, 316. PubMed ID: 2695303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on flow-dependent concentration polarization of low density lipoproteins at the luminal surface of a straight artery.
    Wada S; Karino T
    Biorheology; 1999; 36(3):207-23. PubMed ID: 10690269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the hemodynamics in 6mm and 4-7 mm hemodialysis grafts by means of CFD.
    Van Tricht I; De Wachter D; Tordoir J; Verdonck P
    J Biomech; 2006; 39(2):226-36. PubMed ID: 16321624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile.
    Azer K; Peskin CS
    Cardiovasc Eng; 2007 Jun; 7(2):51-73. PubMed ID: 17566860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A new hemodynamic endothelial approach using non-invasive evaluation of instantaneous wall shear in human arteries. Application in arterial hypertension].
    Colin JM; Del-Pino M; Aouate JP; Flaud P; Levenson J; Simon A
    Arch Mal Coeur Vaiss; 1990 Jul; 83(8):1201-3. PubMed ID: 2148077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The temporal changes of arterial blood flow dynamics.
    Shibeshi SS; Collins WE
    Biomed Sci Instrum; 2006; 42():96-101. PubMed ID: 16817592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of circumferential wall stress and luminal shear stress within intact vascular segments perfused ex vivo.
    El-Kurdi MS; Vipperman JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051003. PubMed ID: 19045510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic flow wave pattern as a prognostic indicator in peripheral arterial reconstruction.
    Kusaba A; Kina M; Watanabe T; Furuyama M; Okadome K; Muto Y; Kamori M; Inokuchi K
    Jpn J Surg; 1981; 11(4):232-7. PubMed ID: 6457196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries.
    Qiao AK; Guo XL; Wu SG; Zeng YJ; Xu XH
    Med Eng Phys; 2004 Sep; 26(7):545-52. PubMed ID: 15271282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiscale approach for modelling wave propagation in an arterial segment.
    Pontrelli G
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.