These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 667700)

  • 1. Biochemical and genetic approaches to the study of mammalian mitochondrial tRNAs.
    Aujame L; Yatscoff RW; Freeman KB
    Can J Biochem; 1978 Jun; 56(6):592-7. PubMed ID: 667700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete electrophoretic products of mitochondrial protein synthesis in the Chinese hamster ovary cell line.
    Yatscoff RW; Freeman KB
    Can J Biochem; 1977 Oct; 55(10):1064-74. PubMed ID: 912598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for asparaginyl-tRNA in the regulation of asparagine synthetase in a mammalian cell line.
    Arfin SM; Simpson DR; Chiang CS; Andrulis IL; Hatfield GW
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2367-9. PubMed ID: 18735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian mitochondrial transfer RNAs: chromatographic properties, size and origin.
    Aujame L; Freeman KB
    Nucleic Acids Res; 1979 Feb; 6(2):455-69. PubMed ID: 424302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asparaginyl-tRNA aminoacylation levels and asparagine synthetase expression in cultured Chinese hamster ovary cells.
    Andrulis IL; Hatfield GW; Arfin SM
    J Biol Chem; 1979 Nov; 254(21):10629-33. PubMed ID: 40971
    [No Abstract]   [Full Text] [Related]  

  • 6. Selective synthesis of mitochondrial proteins by Chinese hamster ovary cells severely starved for various amino acids.
    Chamberlain JW; Pollard JW; Stanners CP
    J Cell Biol; 1984 Apr; 98(4):1603-5. PubMed ID: 6715412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of a mutant asparaginyl-tRNA synthetase from Chinese hamster ovary cells.
    Andrulis IL; Chiang CS; Arfin SM; Miner TA; Hatfield GW
    J Biol Chem; 1978 Jan; 253(1):58-62. PubMed ID: 618867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial protein synthesis in a mammalian cell-line with a temperature-sensitive leucyl-tRNA synthetase.
    Wallace RB; Williams TM; Freeman KB
    Eur J Biochem; 1975 Nov; 59(1):167-73. PubMed ID: 1204605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecific variations in proteins synthesized by mammalian mitochondria.
    Yatscoff RW; Aujume L; Freeman KB; Goldstein S
    Can J Biochem; 1978 Oct; 56(10):939-42. PubMed ID: 215283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial tRNA import and its consequences for mitochondrial translation.
    Schneider A
    Annu Rev Biochem; 2011; 80():1033-53. PubMed ID: 21417719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human mitochondrial ribosomes can switch structural tRNAs - but when and why?
    Chrzanowska-Lightowlers Z; Rorbach J; Minczuk M
    RNA Biol; 2017 Dec; 14(12):1668-1671. PubMed ID: 28786741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two dimensional polyacrylamide gel electrophoresis analysis of Tetrahymena mitochondrial tRNA.
    Suyama Y
    Curr Genet; 1986; 10(5):411-20. PubMed ID: 3127061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and physical properties of mammalian mitochondrial aminoacyl-transfer RNAs. I. Molecular weights of mitochondrial leucyl- and methionyl-transfer RNAs.
    Aujame L; Wallace RB; Freeman KB
    Biochim Biophys Acta; 1978 Apr; 518(2):308-20. PubMed ID: 247992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase.
    Iwasaki W; Sekine S; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S
    J Mol Biol; 2006 Jul; 360(2):329-42. PubMed ID: 16753178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid.
    Berthet-Colominas C; Seignovert L; Härtlein M; Grotli M; Cusack S; Leberman R
    EMBO J; 1998 May; 17(10):2947-60. PubMed ID: 9582288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of proteins synthesized in mitochondria of cultured mammalian cells. An assessment of current approaches and problems in interpretation.
    Jeffreys AJ; Craig IW
    Eur J Biochem; 1976 Sep; 68(1):301-11. PubMed ID: 964267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria.
    Hilander T; Zhou XL; Konovalova S; Zhang FP; Euro L; Chilov D; Poutanen M; Chihade J; Wang ED; Tyynismaa H
    Nucleic Acids Res; 2018 Jan; 46(2):849-860. PubMed ID: 29228266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The presence of pseudouridine in the anticodon alters the genetic code: a possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria.
    Tomita K; Ueda T; Watanabe K
    Nucleic Acids Res; 1999 Apr; 27(7):1683-9. PubMed ID: 10076000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single tRNA base pair mediates bacterial tRNA-dependent biosynthesis of asparagine.
    Bailly M; Giannouli S; Blaise M; Stathopoulos C; Kern D; Becker HD
    Nucleic Acids Res; 2006; 34(21):6083-94. PubMed ID: 17074748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The predatory bacterium Bdellovibrio bacteriovorus aspartyl-tRNA synthetase recognizes tRNAAsn as a substrate.
    Alperstein A; Ulrich B; Garofalo DM; Dreisbach R; Raff H; Sheppard K
    PLoS One; 2014; 9(10):e110842. PubMed ID: 25338061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.