These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6677281)

  • 1. Effect of high osmotic media on blood viscosity and red blood cell deformability.
    Yamamoto A; Niimi H
    Biorheology; 1983; 20(5):615-22. PubMed ID: 6677281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of osmolality on erythrocyte rheology and perfusion of an artificial microvascular network.
    Reinhart WH; Piety NZ; Goede JS; Shevkoplyas SS
    Microvasc Res; 2015 Mar; 98():102-7. PubMed ID: 25660474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ionic and non-ionic contrast media on whole blood viscosity, plasma viscosity and hematocrit in vitro.
    Aspelin P
    Acta Radiol Diagn (Stockh); 1978; 19(6):977-89. PubMed ID: 735850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a hyperosmolar intravenous contrast medium on blood viscosity.
    Lloyd DA; Stein JS; Rowe MI
    Invest Radiol; 1991 Mar; 26(3):220-3. PubMed ID: 2055726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the rheologic properties of blood as induced by sodium/meglumine ioxaglate compared with sodium/meglumine diatrizoate and metrizamide.
    Stäubli M; Braunschweig J; Tillmann U
    Acta Radiol Diagn (Stockh); 1982; 23(1):71-8. PubMed ID: 7080859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB; Meiselman HJ
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The flow behavior of lysolecithin-induced echinocytes.
    Rogausch H
    Biorheology; 1984; 21(6):757-65. PubMed ID: 6518288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of hydroxyethyl starch on the flow properties of human erythrocyte suspensions.
    Corry WD; Jackson LJ; Seaman GV
    Biorheology; 1983; 20(5):705-17. PubMed ID: 6203575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flows of red blood cell suspensions through narrow two-dimensional channels.
    Chan T; Jaffrin MY; Seshadri V; Mc Kay C
    Biorheology; 1982; 19(1/2):253-67. PubMed ID: 6807368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The single erythrocyte rigidometer (SER) as a reference for RBC deformability.
    Kiesewetter H; Dauer U; Teitel P; Schmid-Schönbein H; Trapp R
    Biorheology; 1982; 19(6):737-53. PubMed ID: 7184522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ionic and non-ionic contrast media on red cell deformability in vitro.
    Aspelin P
    Acta Radiol Diagn (Stockh); 1979; 20(1):1-12. PubMed ID: 433635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filterability and other methods of approaching red cell deformability. Determinants of blood viscosity and red cell deformability.
    Chien S
    Scand J Clin Lab Invest Suppl; 1981; 156():7-12. PubMed ID: 6948403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inositol hexaphosphate-loaded red blood cells (RBCs) on the rheology of sickle RBCs.
    Lamarre Y; Bourgeaux V; Pichon A; Hardeman MR; Campion Y; Hardeman-Zijp M; Martin C; Richalet JP; Bernaudin F; Driss F; Godfrin Y; Connes P
    Transfusion; 2013 Mar; 53(3):627-36. PubMed ID: 22804873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Hemorheologic effects of ioxaglate: a contribution to an interpretation of the effect of hyperosmolar roentgen contrast media on the fluidity of erythrocytes].
    Schmid-Schönbein H; Teitel P; Tietz G; Ozlen A
    Radiologe; 1984 Oct; 24(10):478-87. PubMed ID: 6505220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric, osmotic, and membrane mechanical properties of density-separated human red cells.
    Linderkamp O; Meiselman HJ
    Blood; 1982 Jun; 59(6):1121-7. PubMed ID: 7082818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of contrast media osmolality on isolated rabbit heart performance.
    Bongrani S; Baldi G; Cucchini F; di Donato M; Visioli O
    Acta Radiol Diagn (Stockh); 1979; 20(5):769-78. PubMed ID: 93401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the hemodynamic responses to metrizamide and meglumine/sodium diatrizoate in canine renal angiography.
    Morris TW; Katzberg RW; Fischer HW
    Invest Radiol; 1978; 13(1):74-8. PubMed ID: 632051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition.
    Renoux C; Faivre M; Bessaa A; Da Costa L; Joly P; Gauthier A; Connes P
    Sci Rep; 2019 May; 9(1):6771. PubMed ID: 31043643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of flunarizine on erythrocyte suspension viscosity under conditions of extreme hypoxia, low pH, and lactate treatment.
    Kavanagh BD; Coffey BE; Needham D; Hochmuth RM; Dewhirst MW
    Br J Cancer; 1993 Apr; 67(4):734-41. PubMed ID: 8471430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.