These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 667738)
1. Stable isotope fractionation by Clostridium pasteurianum. 2. Regulation of sulfite reductases by sulfur amino acids and their influence on sulfur isotope fractionation during SO32- and SO42- reduction. Laishley EJ; Krouse HR Can J Microbiol; 1978 Jun; 24(6):716-24. PubMed ID: 667738 [TBL] [Abstract][Full Text] [Related]
2. Stable isotope fractionation by Clostridium pasteurianum. 3. Effect of SeO32- on the physiology and associated sulfur isotope fractionation during SO32- and SO42- reductions. Harrison GI; Laishley EJ; Krouse HR Can J Microbiol; 1980 Aug; 26(8):952-8. PubMed ID: 7459717 [TBL] [Abstract][Full Text] [Related]
3. Stable isotope fractionation by Clostridium pasteurianum. 1. 34S/32S: inverse isotope effects during SO4-2- and SO3-2- reduction. McCready RG; Laishley EJ; Krouse HR Can J Microbiol; 1975 Mar; 21(3):235-44. PubMed ID: 234781 [TBL] [Abstract][Full Text] [Related]
4. Stable isotope fractionation by Clostridium pasteurianum. 4. Sulfur isotope fractionation during enzymatic S3O6(2-), S2O3(2-), and SO3(2-) reductions. Harrison GI; Laishley EJ; Krouse HR Can J Microbiol; 1981 Aug; 27(8):824-34. PubMed ID: 7296413 [TBL] [Abstract][Full Text] [Related]
5. Thiosulfate formation and associated isotope effects during sulfite reduction by Clostridium pasteurianum. Chambers LA; Trudinger PA Can J Microbiol; 1979 Jun; 25(6):719-21. PubMed ID: 476549 [TBL] [Abstract][Full Text] [Related]
6. The use of stable sulfur isotope labelling to elucidate sulfur metabolism by Clostridium pasteurianum. McCready RG; Laishley EJ; Krouse HR Arch Microbiol; 1976 Sep; 109(3):315-7. PubMed ID: 985000 [TBL] [Abstract][Full Text] [Related]
7. Sulfur isotope fractionation by Proteus vulgaris and Salmonella heidelberg during the reduction of thiosulfate. McCready RG; Grinenko VA; Krouse HR Can J Microbiol; 1980 Oct; 26(10):1173-7. PubMed ID: 7006763 [TBL] [Abstract][Full Text] [Related]
8. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Jiranek V; Langridge P; Henschke PA Appl Environ Microbiol; 1995 Feb; 61(2):461-7. PubMed ID: 7574581 [TBL] [Abstract][Full Text] [Related]
9. Morphological modifications of cells of Clostridium pasteurianum caused by growth on sulfite. McCready RG; Costerton JW; Laishley EJ Can J Microbiol; 1976 Feb; 22(2):269-75. PubMed ID: 1260530 [TBL] [Abstract][Full Text] [Related]
10. Sulfur isotope fractionation by Salmonella heidelberg: inverse isotope effects during growth on high concentrations of Na2SO3. McCready RG; Krouse HR Can J Microbiol; 1979 Dec; 25(12):1387-93. PubMed ID: 534960 [TBL] [Abstract][Full Text] [Related]
11. Sulfur isotope fractionation during SO3(2-) reduction by different clostridial species. Laishley EJ; Tyler MG; Krouse HR Can J Microbiol; 1984 Jun; 30(6):841-4. PubMed ID: 6091857 [TBL] [Abstract][Full Text] [Related]
12. Studies on the sulfite reduction test for clostridia. Kawabata N Microbiol Immunol; 1980; 24(4):271-9. PubMed ID: 6993870 [TBL] [Abstract][Full Text] [Related]
14. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum. Fry B; Gest H; Hayes JM FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842 [TBL] [Abstract][Full Text] [Related]
15. A ferredoxin-linked sulfite reductase from Clostridium pasteurianum. Laishley EJ; Lin PM; Peck HD Can J Microbiol; 1971 Jul; 17(7):889-95. PubMed ID: 4398462 [No Abstract] [Full Text] [Related]
16. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants. Kurmanbayeva A; Brychkova G; Bekturova A; Khozin I; Standing D; Yarmolinsky D; Sagi M Methods Mol Biol; 2017; 1631():253-271. PubMed ID: 28735402 [TBL] [Abstract][Full Text] [Related]
17. Regulation of arylsulfatase synthesis by sulfur compounds in Klebsiella aerogenes. Adachi T; Murooka Y; Harada T J Bacteriol; 1975 Jan; 121(1):29-35. PubMed ID: 1116990 [TBL] [Abstract][Full Text] [Related]
18. Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH. Hansen J; Cherest H; Kielland-Brandt MC J Bacteriol; 1994 Oct; 176(19):6050-8. PubMed ID: 7928966 [TBL] [Abstract][Full Text] [Related]
19. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa. Tsakraklides G; Martin M; Chalam R; Tarczynski MC; Schmidt A; Leustek T Plant J; 2002 Dec; 32(6):879-89. PubMed ID: 12492831 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Barton LL; Fardeau ML; Fauque GD Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]