These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6678615)

  • 1. Metabolic control and compartmentation in single living cells.
    Kohen E; Kohen C; Hirschberg JG; Wouters AW; Thorell B; Westerhoff HV; Charyulu KK
    Cell Biochem Funct; 1983 Apr; 1(1):3-16. PubMed ID: 6678615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The differential effects of dimethylnitrosamine and ethionine on mitochondrial and extramitochondrial dehydrogenases in single intact cells.
    Kohen E; Kohen C
    Biochim Biophys Acta; 1984 Feb; 803(1-2):115-20. PubMed ID: 6696953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New metabolic parameters for the characterization of cells.
    Kohen E; Kohen C; Hirschberg JG; Wouters AW; Bartick PR; Westerhoff HV; Charyulu KK; Schachtschabel DO
    Blood Cells; 1980; 6(4):753-65. PubMed ID: 7008873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol - characterization of a glutathione- and NAD-dependent arsenate reduction linked to glycolysis.
    Németi B; Gregus Z
    Toxicol Sci; 2005 Jun; 85(2):847-58. PubMed ID: 15788720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study.
    Koretsky AP; Balaban RS
    Biochim Biophys Acta; 1987 Oct; 893(3):398-408. PubMed ID: 2888484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A nomogram method for calculating the NAD(P)+/NAD(P)H ratio in cell compartments].
    Mel'nichuk DA; Skorik LV; Sulima IM
    Ukr Biokhim Zh (1978); 1987; 59(4):59-64. PubMed ID: 3629729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A preliminary microspectrofluorometric study of NAD(P) reduction in dibenzo(a, e) fluoranthene-treated single living cells.
    Salmon JM; Kohen E; Kohen C; Viallet P; Zajdela F
    Histochemistry; 1976 Jul; 47(4):291-302. PubMed ID: 8411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of NAD recirculation on the mechanism of ATP stabilization in cytoplasm. Mathematical models].
    Dynnik VV; Sel'kov EE; Ovchinnikov IA
    Biokhimiia; 1977 Sep; 42(9):1567-76. PubMed ID: 199286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling factors in nutrient-induced insulin release.
    Malaisse WJ; Malaisse-Lagae F; Sener A
    Experientia; 1984 Oct; 40(10):1035-43. PubMed ID: 6092124
    [No Abstract]   [Full Text] [Related]  

  • 12. Multichannel microspectrofluorometry for topographic and spectral analysis of NAD(P)H fluorescence in single living cells.
    Kohen E; Hirschberg JG; Kohen C; Wouters A; Pearson A; Salmon JM; Thorell B
    Biochim Biophys Acta; 1975 Jul; 396(1):149-54. PubMed ID: 238626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-cytometric monitoring of intracellular flavins simultaneously with NAD(P)H levels.
    Thorell B
    Cytometry; 1983 Jul; 4(1):61-5. PubMed ID: 6617395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficiency of oxidative phosphorylation and the rapid control by thyroid hormone of nicotinamide nucleotide reduction and transhydrogenation in intact rat liver mitochondria.
    Corrigall J; Tselentis BS; Mowbray J
    Eur J Biochem; 1984 Jun; 141(2):435-40. PubMed ID: 6734604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyridine Dinucleotides from Molecules to Man.
    Fessel JP; Oldham WM
    Antioxid Redox Signal; 2018 Jan; 28(3):180-212. PubMed ID: 28635300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of poly (ADP-ribose) polymerase.
    Berger SJ; Sudar DC; Berger NA
    Biochem Biophys Res Commun; 1986 Jan; 134(1):227-32. PubMed ID: 3080986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentation in relation to metabolic control in liver.
    Gumaa KA; McLean P; Greenbaum AL
    Essays Biochem; 1971; 7():39-86. PubMed ID: 4399907
    [No Abstract]   [Full Text] [Related]  

  • 18. Sustained oscillations in free-energy state and hexose phosphates in yeast.
    Richard P; Teusink B; Hemker MB; Van Dam K; Westerhoff HV
    Yeast; 1996 Jun; 12(8):731-40. PubMed ID: 8813760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The operation of the malate-aspartate shuttle in the reoxidation of glycolytic NADH in slices of fetal rat liver.
    Dani A; Bartoli GM; Galeotti T
    Biochim Biophys Acta; 1977 Dec; 462(3):781-4. PubMed ID: 202312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulatory effect of ADP, ATP, NAD(P) on pyruvate production from malate by uncoupled human placental mitochondria.
    Swierczyński J; Aleksandrowicz Z; Zelewski L
    Biochem Med Metab Biol; 1987 Oct; 38(2):156-64. PubMed ID: 3675918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.