These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 6678850)

  • 1. Hyperthermia-induced alteration in erythrocyte velocity in tumors.
    Reinhold HS; Van den Berg-Blok AE
    Int J Microcirc Clin Exp; 1983; 2(4):285-95. PubMed ID: 6678850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the response of the microcirculation to hyperthermia in five different tumours.
    Reinhold HS; van den Berg-Blok AE
    Eur J Cancer Clin Oncol; 1989 Apr; 25(4):611-8. PubMed ID: 2540985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of a heat pulse on the thermally induced damage to tumour microcirculation.
    Reinhold HS; van den Berg-Blok A
    Eur J Cancer Clin Oncol; 1983 Feb; 19(2):221-5. PubMed ID: 6681767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative studies of microcirculatory function in malignant tissue: influence of temperature on microvascular hemodynamics during the early growth of the BA 1112 rat sarcoma.
    Endrich B; Zweifach BW; Reinhold HS; Intaglietta M
    Int J Radiat Oncol Biol Phys; 1979; 5(11-12):2021-30. PubMed ID: 544581
    [No Abstract]   [Full Text] [Related]  

  • 5. Time-temperature relationship for hyperthermia induced stoppage of the microcirculation in tumors.
    van den Berg-Block AE; Reinhold HS
    Int J Radiat Oncol Biol Phys; 1984 May; 10(5):737-40. PubMed ID: 6735759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental hyperthermic treatment of a human colon carcinoma xenograft. The thermal sensitivity of the tumour microcirculation.
    van den Berg-Blok AE; Reinhold HS
    Eur J Cancer Clin Oncol; 1987 Aug; 23(8):1177-80. PubMed ID: 3653211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric properties of Co-gamma-irradiated and microwave-heated rat tumour and skin measured in vivo between 0.2 and 2.4 GHz.
    Zywietz F; Knöchel R
    Phys Med Biol; 1986 Sep; 31(9):1021-9. PubMed ID: 3774874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in microregional perfusion, oxygenation, ATP and lactate distribution in subcutaneous rat tumours upon water-filtered IR-A hyperthermia.
    Kelleher DK; Engel T; Vaupel PW
    Int J Hyperthermia; 1995; 11(2):241-55. PubMed ID: 7790738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological effects of hyperthermia: response of capillary blood flow and structure to local tumor heating.
    Emami B; Nussbaum GH; TenHaken RK; Hughes WL
    Radiology; 1980 Dec; 137(3):805-9. PubMed ID: 7444065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood flow-interrupting hyperthermic chemotherapy on established autochthonous mouse sarcoma induced by 3-methylcholanthrene.
    Kidera Y; Baba T
    Cancer Res; 1978 Mar; 38(3):556-9. PubMed ID: 626960
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative flow velocity of erythrocytes and leukocytes in feline retinal capillaries.
    Ben-nun J
    Invest Ophthalmol Vis Sci; 1996 Aug; 37(9):1854-9. PubMed ID: 8759354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of an increased erythrocyte count on rapid blood flow fluctuations in the microvessels of the rat brain].
    Kisliakov IuIa; Levkovich IuI; Shumilova TE; Vershinina EA
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jun; 75(6):777-85. PubMed ID: 2806644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in erythrocyte velocity in microvessels measured with a microprismatic grating].
    Shinkarenko VS; Morozov SE
    Biull Eksp Biol Med; 1984 Jan; 97(1):104-6. PubMed ID: 6692017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-Doppler measurements of concentration and velocity of moving blood cells in rat cerebral circulation.
    Barfod C; Akgören N; Fabricius M; Dirnagl U; Lauritzen M
    Acta Physiol Scand; 1997 Jun; 160(2):123-32. PubMed ID: 9208038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of erythrocyte velocity in rat liver after acute ethanol administration.
    Hamamatsu H
    Arukoru Kenkyuto Yakubutsu Ison; 1993 Dec; 28(6):467-82. PubMed ID: 8129674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Determination of flow intensity in small vessels with laminated streaming from the movement of the erythrocyte picture].
    Röckemann W
    Arch Kreislaufforsch; 1972 Sep; 67(3):223-32. PubMed ID: 4646167
    [No Abstract]   [Full Text] [Related]  

  • 18. Heterogeneity of capillary flow in the retrograde microcirculation induced in rat limb by arteriovenous shunting.
    Niimi H; Nakano A; Komai Y; Seki J
    Microvasc Res; 2005 Jul; 70(1-2):23-31. PubMed ID: 15894342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose-dependent effects of hydralazine on microcirculatory function and hyperthermic response of murine FSall tumors.
    Kalmus J; Okunieff P; Vaupel P
    Cancer Res; 1990 Jan; 50(1):15-9. PubMed ID: 2293549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation.
    Wu CC; Zhang G; Huang TC; Lin KP
    Microvasc Res; 2009 Dec; 78(3):319-24. PubMed ID: 19647002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.