These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 6679115)

  • 1. Initiation and control of swimming in amphibian embryos.
    Roberts A; Soffe SR; Clarke JD; Dale N
    Symp Soc Exp Biol; 1983; 37():261-84. PubMed ID: 6679115
    [No Abstract]   [Full Text] [Related]  

  • 2. Neurons controlling the initiation, generation and modulation of leech swimming.
    Kristan WB; Weeks JC
    Symp Soc Exp Biol; 1983; 37():243-60. PubMed ID: 6679114
    [No Abstract]   [Full Text] [Related]  

  • 3. [Convergence of synaptic influences of somatic afferents of the contralateral side on interneurons of segmental inhibitory pathways to motor neurons].
    Saf'iants VI; Evdokimov SA; Predtechenskaia KS
    Neirofiziologiia; 1973; 5(5):476-84. PubMed ID: 4772139
    [No Abstract]   [Full Text] [Related]  

  • 4. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
    Li WC; Soffe SR; Roberts A
    J Neurophysiol; 2004 Aug; 92(2):895-904. PubMed ID: 15028739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Synaptic activation of thoracic spinal interneurons via reticulo-spinal pathways].
    Bezhenaru IS; Gokin AP; Zadorozhnyi AG; Preobrazhenskii NN
    Neirofiziologiia; 1972; 4(6):566-78. PubMed ID: 4658539
    [No Abstract]   [Full Text] [Related]  

  • 6. Longitudinal gradients in the spinal cord of Xenopus embryos and their possible role in coordination of swimming.
    Roberts A; Tunstall MJ
    Eur J Morphol; 1994 Aug; 32(2-4):176-84. PubMed ID: 7803164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identified neurons in the lamprey spinal cord and their roles in fictive swimming.
    Rovainen CM
    Symp Soc Exp Biol; 1983; 37():305-30. PubMed ID: 6679117
    [No Abstract]   [Full Text] [Related]  

  • 8. A neuronal mechanism for sensory gating during locomotion in a vertebrate.
    Sillar KT; Roberts A
    Nature; 1988 Jan; 331(6153):262-5. PubMed ID: 3336439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Spinal and spino-bulbo-spinal neuronal mechanisms of transmitting somato- and viscero-motor influences in the thoracic region of the spinal cord].
    Duda P; Gokin AP; Pavlasek IU
    Neirofiziologiia; 1973; 5(4):392-400. PubMed ID: 4777797
    [No Abstract]   [Full Text] [Related]  

  • 10. Neural control of swimming in a vertebrate.
    Roberts A; Kahn JA; Soffe SR; Clarke JD
    Science; 1981 Aug; 213(4511):1032-4. PubMed ID: 7196599
    [No Abstract]   [Full Text] [Related]  

  • 11. Factors determining motoneuron rhythmicity during fictive locomotion.
    Jordan LM
    Symp Soc Exp Biol; 1983; 37():423-44. PubMed ID: 6382666
    [No Abstract]   [Full Text] [Related]  

  • 12. Skin impulse excitation of spinal sensory neurons in developing Xenopus laevis (Daudin) tadpoles.
    James LJ; Soffe SR
    J Exp Biol; 2011 Oct; 214(Pt 20):3341-50. PubMed ID: 21957097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastropod feeding: behavioural and neural analysis of a complex multicomponent system.
    Benjamin PR
    Symp Soc Exp Biol; 1983; 37():159-93. PubMed ID: 6679112
    [No Abstract]   [Full Text] [Related]  

  • 14. Frequency-dependent selection of alternative spinal pathways with common periodic sensory input.
    Jilge B; Minassian K; Rattay F; Dimitrijevic MR
    Biol Cybern; 2004 Dec; 91(6):359-76. PubMed ID: 15597176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor pattern formation in the dogfish spinal cord.
    Roberts BL; Williamson RM
    Symp Soc Exp Biol; 1983; 37():331-50. PubMed ID: 6679118
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos.
    Sillar KT; Roberts A
    J Neurosci; 1992 May; 12(5):1647-57. PubMed ID: 1578259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural generation of locomotion in the lamprey: an incomplete account.
    Grillner S; Wallén P; McClellan A; Sigvardt K; Williams T; Feldman J
    Symp Soc Exp Biol; 1983; 37():285-303. PubMed ID: 6679116
    [No Abstract]   [Full Text] [Related]  

  • 18. [Activity of neurons of the dorsal spinocerebellar tract during locomotion].
    Arshavskiĭ IuI; Berkinblit MV; Gel'fand IM; Orlovskiĭ GN; Fukson OI
    Biofizika; 1972; 17(3):487-94. PubMed ID: 5042297
    [No Abstract]   [Full Text] [Related]  

  • 19. Balanced inhibition and excitation drive spike activity in spinal half-centers.
    Berg RW; Alaburda A; Hounsgaard J
    Science; 2007 Jan; 315(5810):390-3. PubMed ID: 17234950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
    Yoshida M; Roberts A; Soffe SR
    J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.