These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 6679262)

  • 1. Attenuation coefficient and atomic number calculation involving elements between hydrogen and zinc in the CT scanner energy range of 50 to 100 keV.
    Henson PW
    Australas Phys Eng Sci Med; 1983; 6(1):20-5. PubMed ID: 6679262
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of equivalent photon energy calibration methods in computed tomography.
    Judy PF; Adler GJ
    Med Phys; 1980; 7(6):685-91. PubMed ID: 7464712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.
    Kinahan PE; Hasegawa BH; Beyer T
    Semin Nucl Med; 2003 Jul; 33(3):166-79. PubMed ID: 12931319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.
    Liu X
    J Xray Sci Technol; 2014; 22(6):763-72. PubMed ID: 25408392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Mass Density Image Reconstructed from the Complex X-Ray Refractive Index.
    Mukaide T; Iida A; Watanabe M; Takada K; Noma T
    PLoS One; 2015; 10(6):e0131401. PubMed ID: 26114770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of effective atomic number and electron density with attenuation coefficients measured with polychromatic x rays.
    Phelps ME; Gado MH; Hoffman EJ
    Radiology; 1975 Dec; 117(3 Pt 1):585-8. PubMed ID: 1188103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating photon interaction coefficients from single energy x-ray CT.
    Midgley SM
    Phys Med Biol; 2012 Dec; 57(23):8079-98. PubMed ID: 23159870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An accurate parametrisation of the x-ray attenuation coefficient.
    Hawkes DJ; Jackson DF
    Phys Med Biol; 1980 Nov; 25(6):1167-71. PubMed ID: 7208629
    [No Abstract]   [Full Text] [Related]  

  • 9. Basis of CT: the radon transform.
    Wininger KL
    Radiol Technol; 2013; 84(4):413-8. PubMed ID: 23547201
    [No Abstract]   [Full Text] [Related]  

  • 10. Dual-energy X-ray analysis using synchrotron computed tomography at 35 and 60 keV for the estimation of photon interaction coefficients describing attenuation and energy absorption.
    Midgley S; Schleich N
    J Synchrotron Radiat; 2015 May; 22(3):807-18. PubMed ID: 25931101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo study of the energy spectra and transmission characteristics of scattered radiation from x-ray computed tomography.
    Platten DJ
    J Radiol Prot; 2014 Jun; 34(2):445-56. PubMed ID: 24894101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchrotron-based scattered radiation from phantom materials used in X-ray CT.
    Rao DV; Swapna M; Cesareo R; Brunetti A; Akatsuka T; Yuasa T; Takeda T; Gigante GE
    J Xray Sci Technol; 2010; 18(3):327-37. PubMed ID: 20714090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron backscattering. Implication to electron dosimetry.
    Klevenhagen SC
    Radiol Med; 1990 Oct; 80(4 Suppl 1):160-2. PubMed ID: 2251410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study for DEXA using synchrotron CT at 20-35 keV.
    Midgley SM
    Phys Med Biol; 2013 Feb; 58(4):1185-205. PubMed ID: 23369847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The computation of pion depth-dose curves in water and comparison with experiment.
    Turner JE; Dutrannois J; Wright HA; Hamm RN; Baarli J; Sullivan AH; Berger MJ; Seltzer SM
    Radiat Res; 1972 Nov; 52(2):229-46. PubMed ID: 4643156
    [No Abstract]   [Full Text] [Related]  

  • 16. First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging.
    Kuang Y; Pratx G; Bazalova M; Meng B; Qian J; Xing L
    IEEE Trans Med Imaging; 2013 Feb; 32(2):262-7. PubMed ID: 23076031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenomenology of flow disappearance in intermediate-energy heavy ion collisions.
    Tripathi RK; Townsend LW; Khan F
    Phys Rev C Nucl Phys; 1993 Mar; 47(3):935-7. PubMed ID: 11538445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting atomic numbers and electron densities from a dual source dual energy CT scanner: experiments and a simulation model.
    Landry G; Reniers B; Granton PV; van Rooijen B; Beaulieu L; Wildberger JE; Verhaegen F
    Radiother Oncol; 2011 Sep; 100(3):375-9. PubMed ID: 21924780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nuclear fragmentation energy deposition model.
    Ngo DM; Wilson JW; Fogarty TN; Buck WW
    IEEE Trans Nucl Sci; 1991 Feb; 38(1):1-8. PubMed ID: 11538186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Prospects of using proton-ion radiography in diagnosis].
    Shafranov MD; Shafranova MG
    Med Radiol (Mosk); 1978 Oct; 23(10):72-81. PubMed ID: 359996
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.