These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6679696)

  • 1. Interaction of microporous glassy carbon and living tissue.
    Lauslahti K; Pätiälä H; Rokkanen P; Tarvainen T; Rautavuori J; Törmälä P
    Ann Biomed Eng; 1983; 11(5):495-8. PubMed ID: 6679696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fabrication of artifacts out of glassy carbon and carbon-fiber-reinforced carbon for biomedical applications.
    Jenkins GM; Grigson CJ
    J Biomed Mater Res; 1979 May; 13(3):371-94. PubMed ID: 571441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optical and electron microscopy study of materials implanted in the rat middle ear. I Carbon.
    Williams KR; Blayney AW
    Biomaterials; 1986 Jul; 7(4):283-6. PubMed ID: 3755624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility of carbon-carbon materials: in vivo study of their erosion using 14carbon labelled samples.
    More N; Baquey C; Barthe X; Rouais F; Rivel J; Trinquecoste M; Marchand A
    Biomaterials; 1988 Jul; 9(4):328-34. PubMed ID: 3214658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of bone to carbon--carbon composites.
    Adams D; Williams DF
    Biomaterials; 1984 Mar; 5(2):59-64. PubMed ID: 6722248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility of diamond-like carbon coating.
    Thomson LA; Law FC; Rushton N; Franks J
    Biomaterials; 1991 Jan; 12(1):37-40. PubMed ID: 2009344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Carbon band implants in animal experiments. Light and transmission electron microscopy studies of biocompatibility].
    Rohe K; Braun A; Cotta H
    Z Orthop Ihre Grenzgeb; 1986; 124(5):569-77. PubMed ID: 3544554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhein and polydimethylsiloxane functionalized carbon/carbon composites as prosthetic implants for bone repair applications.
    Jia Z; Yang C; Jiao J; Li X; Zhu D; Yang Y; Yang J; Che Y; Lu Y; Feng X
    Biomed Mater; 2017 Jul; 12(4):045004. PubMed ID: 28425918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical effects of e-PTFE implant structure on soft tissue implantation stability: a study in the porcine model.
    Greene D; Pruitt L; Maas CS
    Laryngoscope; 1997 Jul; 107(7):957-62. PubMed ID: 9217139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials: selection and complications.
    Vitale TD; Fallat LM
    J Foot Surg; 1988; 27(6):533-40. PubMed ID: 3072368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and clinical aspects of carbon as a middle ear prosthesis.
    Blayney AW; Romero Rio JA; Williams KR; Guilhaume A; Bagot D'Arc M; Portmann M
    Clin Otolaryngol Allied Sci; 1986 Jun; 11(3):189-97. PubMed ID: 3524911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Histological studies of the biocompatibility of glass-carbon and bio-vitreous ceramics in muscle tissue. 1: Implantation of solids].
    Raabe G; Müller P; Thieme V; Hofmann H; Findeisen B; Berger G
    Stomatol DDR; 1986 Feb; 36(2):53-60. PubMed ID: 3461591
    [No Abstract]   [Full Text] [Related]  

  • 13. Future directions in biomaterial implants and tissue engineering.
    Friedman CD
    Arch Facial Plast Surg; 2001; 3(2):136-7. PubMed ID: 11368669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Histological studies of the biocompatibility of glass-carbon and of bio-vitreous ceramics in muscle tissue. 2: Implantation of the powders].
    Raabe G; Müller P; Thieme V; Hofmann H; Findeisen B; Berger G
    Stomatol DDR; 1986 Mar; 36(3):117-23. PubMed ID: 3461599
    [No Abstract]   [Full Text] [Related]  

  • 15. Biocompatibility of carbon fibre and carbon fibre microparticles.
    Wolter D
    Aktuelle Probl Chir Orthop; 1983; 26():28-36. PubMed ID: 6136228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone tissue engineering.
    Healy KE; Guldberg RE
    J Musculoskelet Neuronal Interact; 2007; 7(4):328-30. PubMed ID: 18094496
    [No Abstract]   [Full Text] [Related]  

  • 17. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation.
    Lei ZY; Liu T; Li WJ; Shi XH; Fan DL
    Int J Nanomedicine; 2016; 11():5563-5572. PubMed ID: 27822035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical biocompatibilities of titanium alloys for biomedical applications.
    Niinomi M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterials, biocompatibility, and peri-implant considerations.
    Lemons J; Natiella J
    Dent Clin North Am; 1986 Jan; 30(1):3-23. PubMed ID: 3514292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface changes of nanotopography by carbon ion implantation to enhance the biocompatibility of silicone rubber: an in vitro study of the optimum ion fluence and adsorbed protein.
    Li X; Zhou X; Chen Y; Yu S; Chen X; Xia X; Shi X; Zhang Y; Fan D
    J Mater Sci Mater Med; 2017 Sep; 28(10):167. PubMed ID: 28916983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.