These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6679784)

  • 1. [Topochemical aspects of pyrimidine specificity of ribonuclease A].
    Karpeĭskiĭ MIa; Moiseev GP; Bocharov AL; Bogdanova GA; Mikhaĭlov SN
    Bioorg Khim; 1983 Jun; 9(6):803-14. PubMed ID: 6679784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Studies on the reaction mechanism of a ribonuclease II from Aspergillus oryzae (author's transl)].
    Kaiser PM; Bonacker L; Witzel H; Holý A
    Hoppe Seylers Z Physiol Chem; 1975 Feb; 356(2):143-55. PubMed ID: 240766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Theoretical conformational analysis of noncovalent complexes of purine nucleotides with ribonuclease].
    Lipkind GM; Karpeĭskiĭ MIa
    Mol Biol (Mosk); 1982; 16(4):712-9. PubMed ID: 7121459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5'-Modified pyrimidine nucleosides as inhibitors of ribonuclease A.
    Samanta A; Dasgupta S; Pathak T
    Bioorg Med Chem; 2011 Apr; 19(7):2478-84. PubMed ID: 21420869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A residue to residue hydrogen bond mediates the nucleotide specificity of ribonuclease A.
    delCardayré SB; Raines RT
    J Mol Biol; 1995 Sep; 252(3):328-36. PubMed ID: 7563054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme.
    Hofsteenge J; Moldow C; Vicentini AM; Zelenko O; Jarai-Kote Z; Neumann U
    Biochemistry; 1998 Jun; 37(26):9250-7. PubMed ID: 9649305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triazole pyrimidine nucleosides as inhibitors of Ribonuclease A. Synthesis, biochemical, and structural evaluation.
    Parmenopoulou V; Chatzileontiadou DS; Manta S; Bougiatioti S; Maragozidis P; Gkaragkouni DN; Kaffesaki E; Kantsadi AL; Skamnaki VT; Zographos SE; Zounpoulakis P; Balatsos NA; Komiotis D; Leonidas DD
    Bioorg Med Chem; 2012 Dec; 20(24):7184-93. PubMed ID: 23122937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Kinetic modeling of the mechanism of allosteric interactions of restriction endonuclease EcoRII with two DNA segments].
    Piatrauskene OV; Tashlitskiĭ VN; Brevnov MG; Bakman Ia; Gromova ES
    Biokhimiia; 1996 Jul; 61(7):1257-69. PubMed ID: 9035738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role of elementary interactions between nucleic-acid base and amino-acid side chains in specificity of ribonuclease.
    Takenaka A; Shibata M; Takimoto M; Sasada Y
    Nucleic Acids Symp Ser; 1984; (15):113-6. PubMed ID: 6522281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excavating an active site: the nucleobase specificity of ribonuclease A.
    Kelemen BR; Schultz LW; Sweeney RY; Raines RT
    Biochemistry; 2000 Nov; 39(47):14487-94. PubMed ID: 11087402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.
    Lorentzen E; Hensel R; Knura T; Ahmed H; Pohl E
    J Mol Biol; 2004 Aug; 341(3):815-28. PubMed ID: 15288789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H and 15N NMR investigation of the interaction of pyrimidine nucleotides with ribonuclease A.
    Hahn U; Desai-Hahn R; Rüterjans H
    Eur J Biochem; 1985 Feb; 146(3):705-12. PubMed ID: 3971970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme specificity: base recognition and hydrolysis of RNA by ribonuclease A.
    Borkakoti N
    FEBS Lett; 1983 Oct; 162(2):367-73. PubMed ID: 6195018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A potential allosteric subsite generated by domain swapping in bovine seminal ribonuclease.
    Vitagliano L; Adinolfi S; Sica F; Merlino A; Zagari A; Mazzarella L
    J Mol Biol; 1999 Oct; 293(3):569-77. PubMed ID: 10543951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer modelling studies of ribonuclease A-pyrimidine nucleotide complexes.
    Seshadri K; Balaji PV; Rao VS; Vishveshwara S
    J Biomol Struct Dyn; 1993 Oct; 11(2):395-415. PubMed ID: 8286064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of substrate uridyl 3',5'-adenosine with ribonuclease A: a molecular dynamics study.
    Seshadri K; Rao VS; Vishveshwara S
    Biophys J; 1995 Dec; 69(6):2185-94. PubMed ID: 8599627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of pyridine nucleotide substrates with Escherichia coli dihydrodipicolinate reductase: thermodynamic and structural analysis of binary complexes.
    Reddy SG; Scapin G; Blanchard JS
    Biochemistry; 1996 Oct; 35(41):13294-302. PubMed ID: 8873595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morpholino, piperidino, and pyrrolidino derivatives of pyrimidine nucleosides as inhibitors of ribonuclease A: synthesis, biochemical, and crystallographic evaluation.
    Samanta A; Leonidas DD; Dasgupta S; Pathak T; Zographos SE; Oikonomakos NG
    J Med Chem; 2009 Feb; 52(4):932-42. PubMed ID: 19173562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion.
    Ibuka AS; Ishii Y; Galleni M; Ishiguro M; Yamaguchi K; Frère JM; Matsuzawa H; Sakai H
    Biochemistry; 2003 Sep; 42(36):10634-43. PubMed ID: 12962487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.