BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6679914)

  • 1. Immunoreactive vasoactive intestinal polypeptide is concentrated in the sacral spinal cord: a possible marker for pelvic visceral afferent fibers.
    Basbaum AI; Glazer EJ
    Somatosens Res; 1983; 1(1):69-82. PubMed ID: 6679914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vasoactive intestinal polypeptide and substance P in primary afferent pathways to the sacral spinal cord of the cat.
    Kawatani M; Erdman SL; de Groat WC
    J Comp Neurol; 1985 Nov; 241(3):327-47. PubMed ID: 2418069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in the sacral spinal cord of the cat: light and electron microscopic observations.
    Honda CN; Réthelyi M; Petrusz P
    J Neurosci; 1983 Nov; 3(11):2183-96. PubMed ID: 6195317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoreactive dynorphin B in sacral primary afferent fibers of the cat.
    Basbaum AI; Cruz L; Weber E
    J Neurosci; 1986 Jan; 6(1):127-33. PubMed ID: 2418172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticotropin releasing factor-like immunoreactivity in afferent projections to the sacral spinal cord of the cat.
    Kawatani M; Suzuki T; de Groat WC
    J Auton Nerv Syst; 1996 Dec; 61(3):218-26. PubMed ID: 8988478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vasoactive intestinal polypeptide in visceral afferent pathways to the sacral spinal cord of the cat.
    Kawatani M; Lowe IP; Nadelhaft I; Morgan C; De Groat WC
    Neurosci Lett; 1983 Dec; 42(3):311-6. PubMed ID: 6664634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasoactive intestinal polypeptide in sacral primary sensory pathways in the cat.
    Morgan CW; Ohara PT; Scott DE
    J Comp Neurol; 1999 May; 407(3):381-94. PubMed ID: 10320218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat.
    Vizzard MA; Erdman SL; Erickson VL; Stewart RJ; Roppolo JR; De Groat WC
    J Comp Neurol; 1994 Jan; 339(1):62-75. PubMed ID: 8106662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents.
    Traub RJ; Allen B; Humphrey E; Ruda MA
    J Comp Neurol; 1990 Dec; 302(3):562-74. PubMed ID: 1702117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasoactive intestinal polypeptide (VIP) increases in the spinal cord after peripheral axotomy of the sciatic nerve originate from primary afferent neurons.
    Shehab SA; Atkinson ME
    Brain Res; 1986 Apr; 372(1):37-44. PubMed ID: 3708358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of neuropeptides in pelvic and pudendal nerve afferent pathways to the sacral spinal cord of the cat.
    Kawatani M; Nagel J; de Groat WC
    J Comp Neurol; 1986 Jul; 249(1):117-32. PubMed ID: 2426310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of visceral primary afferents from the pelvic nerve to Lissauer's tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus.
    Morgan C; Nadelhaft I; de Groat WC
    J Comp Neurol; 1981 Sep; 201(3):415-40. PubMed ID: 7276258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A VIP/PHI-containing pathway links urinary bladder and sacral spinal cord.
    Gibson SJ; Polak JM; Anand P; Blank MA; Yiangou Y; Su HC; Terenghi G; Katagiri T; Morrison JF; Lumb BM
    Peptides; 1986; 7 Suppl 1():205-19. PubMed ID: 3529051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of NADPH-d and nNOS-IR in the thoracolumbar and sacrococcygeal spinal cord of the guinea pig.
    Doone GV; Pelissier N; Manchester T; Vizzard MA
    J Auton Nerv Syst; 1999 Sep; 77(2-3):98-113. PubMed ID: 10580292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical studies on the distribution and origin of candidate peptidergic primary afferent neurotransmitters in the spinal cord of an elasmobranch fish, the Atlantic stingray (Dasyatis sabina).
    Ritchie TC; Leonard RB
    J Comp Neurol; 1983 Feb; 213(4):414-25. PubMed ID: 6187783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VIP terminals, axons, and neurons: distribution throughout the length of monkey and cat spinal cord.
    LaMotte CC; de Lanerolle NC
    J Comp Neurol; 1986 Jul; 249(1):133-45. PubMed ID: 3525616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord.
    LaMotte C
    J Comp Neurol; 1977 Apr; 172(3):529-61. PubMed ID: 402397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distribution and origin of VIP in the spinal cord of six mammalian species.
    Gibson SJ; Polak JM; Anand P; Blank MA; Morrison JF; Kelly JS; Bloom SR
    Peptides; 1984; 5(2):201-7. PubMed ID: 6433328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of vasoactive intestinal peptide immunoreactivity in human foetus and newborn infant spinal cord.
    Charnay Y; Chayvialle JA; Said SI; Dubois PM
    Neuroscience; 1985 Jan; 14(1):195-205. PubMed ID: 3883230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase.
    Roppolo JR; Nadelhaft I; de Groat WC
    J Comp Neurol; 1985 Apr; 234(4):475-88. PubMed ID: 3988996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.