These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 668061)

  • 21. Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.
    Babbs CF
    Cardiovasc Eng; 2009 Jun; 9(2):59-71. PubMed ID: 19543975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of variations of ventricular volume on the electrocardiogram. A comparison of two model simulations.
    Amoore JN; Rudy Y
    J Electrocardiol; 1988 Apr; 21(2):154-60. PubMed ID: 3397698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of rotational myocardial anisotropy in forward potential computations with equivalent heart dipoles.
    Thivierge M; Gulrajani RM; Savard P
    Ann Biomed Eng; 1997; 25(3):477-98. PubMed ID: 9146803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patient-specific identification of optimal ubiquitous electrocardiogram (U-ECG) placement using a three-dimensional model of cardiac electrophysiology.
    Lim KM; Jeon JW; Gyeong MS; Hong SB; Ko BH; Bae SK; Shin KS; Shim EB
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):245-9. PubMed ID: 22893363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computation of heart surface potentials using the surface source model.
    Simms HD; Geselowitz DB
    J Cardiovasc Electrophysiol; 1995 Jul; 6(7):522-31. PubMed ID: 8528487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.
    Spach MS; Miller WT; Miller-Jones E; Warren RB; Barr RC
    Circ Res; 1979 Aug; 45(2):188-204. PubMed ID: 445703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Individual custom-designed modelling for the finite element method to be used in the forward calculation of a body surface isopotential map.
    Oguri KK; Iwata A; Suzumura N; Okajima M; Doniwa K; Ohta K
    Front Med Biol Eng; 1991; 3(4):259-68. PubMed ID: 1799560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing.
    Trudel MC; Dubé B; Potse M; Gulrajani RM; Leon LJ
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1319-29. PubMed ID: 15311816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions.
    Cardone-Noott L; Bueno-Orovio A; Mincholé A; Zemzemi N; Rodriguez B
    Europace; 2016 Dec; 18(suppl 4):iv4-iv15. PubMed ID: 28011826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrodynamic heart model construction and ECG simulation.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Methods Inf Med; 2006; 45(5):564-73. PubMed ID: 17019512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A bidomain model for anisotropic cardiac muscle.
    Geselowitz DB; Miller WT
    Ann Biomed Eng; 1983; 11(3-4):191-206. PubMed ID: 6670784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forward problem of electrocardiography: is it solved?
    Bear LR; Cheng LK; LeGrice IJ; Sands GB; Lever NA; Paterson DJ; Smaill BH
    Circ Arrhythm Electrophysiol; 2015 Jun; 8(3):677-84. PubMed ID: 25834182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersion of repolarization, myocardial iso-source maps, and the electrocardiographic T and U waves.
    Ritsema van Eck HJ; Kors JA; van Herpen G
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S96-100. PubMed ID: 16920144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Approximate solution to the bidomain equations for electrocardiogram problems.
    Patel SG; Roth BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051931. PubMed ID: 16383669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of torso inhomogeneities on body surface potentials quantified using "tailored" geometry.
    van Oosterom A; Huiskamp GJ
    J Electrocardiol; 1989 Jan; 22(1):53-72. PubMed ID: 2921579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of normal variations in S-T segment patterns by body surface isopotential mapping: S-T segment elevation in absence of heart disease.
    Mirvis DM
    Am J Cardiol; 1982 Jul; 50(1):122-8. PubMed ID: 7090994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Information on heart repolarization changes obtained from body surface ECG potentials.
    Tysler M; Turzová M; Szathmáry V
    Stud Health Technol Inform; 2002; 90():35-40. PubMed ID: 15460657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of intracardiac blood volume changes on the electrocardiogram.
    Nelson CV
    G Ital Cardiol; 1986 Jul; 16(7):586-95. PubMed ID: 3781148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Magnetocardiography: a comparison with electrocardiography].
    Nakaya Y
    J Cardiogr Suppl; 1984; (3):31-40. PubMed ID: 6242156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Some imaging parameters of the oblique dipole layer cardiac generator derivable from body surface electrical potentials.
    Greensite F
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):159-64. PubMed ID: 1612619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.