These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6682073)

  • 41. O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae.
    Chang EC; Kosman DJ
    J Bacteriol; 1990 Apr; 172(4):1840-5. PubMed ID: 2180907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae.
    Park H; Bakalinsky AT
    Yeast; 2000 Jul; 16(10):881-8. PubMed ID: 10870099
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sulphur acquisition by Neisseria meningitidis.
    Port JL; DeVoe IW; Archibald FS
    Can J Microbiol; 1984 Dec; 30(12):1453-7. PubMed ID: 6441640
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The sulphur metabolism of Pityrosporum ovale and its inhibition by selenium compounds.
    Brotherton J
    J Gen Microbiol; 1967 Dec; 49(3):393-400. PubMed ID: 5582657
    [No Abstract]   [Full Text] [Related]  

  • 45. Accumulation of ingested sulphite- and sulphate-sulphur and utilization of sulphited proteins by rats.
    Gibson WB; Strong FM
    Food Cosmet Toxicol; 1974 Oct; 12(5-6):625-40. PubMed ID: 4375654
    [No Abstract]   [Full Text] [Related]  

  • 46. Methionine degradation in Candida utilis.
    Benítez J; Delgado J; Alonso A; Herrera L
    Folia Microbiol (Praha); 1982; 27(2):144-6. PubMed ID: 6123477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selenium-enriched Candida utilis: Efficient preparation with l-methionine and antioxidant capacity in rats.
    Yang B; Wang D; Wei G; Liu Z; Ge X
    J Trace Elem Med Biol; 2013 Jan; 27(1):7-11. PubMed ID: 22940082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae II. Analysis of suplhite-producing strains.
    Romano P; Zambonelli C; Soli MG
    Arch Microbiol; 1976 Jun; 108(2):211-5. PubMed ID: 776114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutants of Salmonella typhimurium responding to cysteine or methionine: their nature and possible role in the regulation of cysteine biosynthesis.
    Qureshi MA; Smith DA; Kingsman AJ
    J Gen Microbiol; 1975 Aug; 89(2):353-70. PubMed ID: 170364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of microorganisms in transformations of sulphite in spruce forest soil.
    Lettl A
    Folia Microbiol (Praha); 1982; 27(2):147-9. PubMed ID: 7084824
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The oxidation of sulphite in animals systems.
    Johnson JL; Rajagopalan KV
    Ciba Found Symp; 1979; (72):119-33. PubMed ID: 398760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxidation of thiosulphate to sulphate in animal tissues.
    Koj A; Frendo J
    Folia Biol (Krakow); 1967; 15(1):49-63. PubMed ID: 6074735
    [No Abstract]   [Full Text] [Related]  

  • 53. Ergosterol levels in two L-methionine-enriched mutants of the methylotrophic yeast Candida boidinii ICCF26.
    Avram D; Stan R
    FEMS Microbiol Lett; 1992 Nov; 77(1-3):133-5. PubMed ID: 1459400
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short communications. Characterization of a cym mutant of Bacillus subtilis.
    Piggot PJ
    J Gen Microbiol; 1975 Aug; 89(2):371-4. PubMed ID: 809542
    [No Abstract]   [Full Text] [Related]  

  • 55. Uptake and efflux of sulfate in Neurospora crassa.
    Marzluf GA
    Biochim Biophys Acta; 1974 Mar; 339(3):374-81. PubMed ID: 4276129
    [No Abstract]   [Full Text] [Related]  

  • 56. Reduction of bisulfite by the trithionate pathway by cell extracts from Desulfotomaculum nigrificans.
    Akagi JM
    Biochem Biophys Res Commun; 1983 Dec; 117(2):530-5. PubMed ID: 6318762
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Utilization of 35S-thiosulphate and an appraisal of the role of ATP-sulphurylase in chemolithotrophic Thiobacillus ferrooxidans.
    Kelley BC; Tuovinen OH; Nicholas DJ
    Arch Microbiol; 1976 Sep; 109(3):205-8. PubMed ID: 10869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pathways of assimilatory sulphate reduction in plants and microorganisms.
    Schiff JA
    Ciba Found Symp; 1979; (72):49-69. PubMed ID: 398767
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [35S]thiosulphate oxidation by Thiobacillus strain C.
    Kelly DP; Syrett PJ
    Biochem J; 1966 Feb; 98(2):537-45. PubMed ID: 5941348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase.
    Müller FH; Bandeiras TM; Urich T; Teixeira M; Gomes CM; Kletzin A
    Mol Microbiol; 2004 Aug; 53(4):1147-60. PubMed ID: 15306018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.