These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6682074)

  • 41. Pathways of assimilatory sulphate reduction in plants and microorganisms.
    Schiff JA
    Ciba Found Symp; 1979; (72):49-69. PubMed ID: 398767
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sulphate repression of
    Nishikawa M; Noda S; Henmi K; Ogawa K
    Microbiology (Reading); 2022 Jun; 168(6):. PubMed ID: 35704379
    [No Abstract]   [Full Text] [Related]  

  • 43. Accumulation and storage of Zn2+ by Candida utilis.
    Failla ML; Benedict CD; Weinberg ED
    J Gen Microbiol; 1976 May; 94(1):23-36. PubMed ID: 6625
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Substrate specificity of the luminal Na(+)-dependent sulphate transport system in the proximal renal tubule as compared to the contraluminal sulphate exchange system.
    David C; Ullrich KJ
    Pflugers Arch; 1992 Aug; 421(5):455-65. PubMed ID: 1461715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uptake and efflux of sulfate in Neurospora crassa.
    Marzluf GA
    Biochim Biophys Acta; 1974 Mar; 339(3):374-81. PubMed ID: 4276129
    [No Abstract]   [Full Text] [Related]  

  • 46. Genetics of sulphate assimilation in Schizosaccharomyces pombe (a short review).
    Simonics T; Bánszky L; Maráz A
    Acta Microbiol Immunol Hung; 2002; 49(2-3):279-83. PubMed ID: 12109159
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidation of sulphide minerals-III determination of sulphate and thiosulphate in oxidised sulphide minerals.
    Steger HF; Desjardins LE
    Talanta; 1977 Nov; 24(11):675-9. PubMed ID: 18962173
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectroscopic studies of flavoproteins and non-haem iron proteins of submitochondrial particles of Torulopsis utilis modified by iron- and sulphate-limited growth in continuous culture.
    Ragan CI; Garland PB
    Biochem J; 1971 Aug; 124(1):171-87. PubMed ID: 4399518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dithionite reduction in the presence of a tetrapyrrole-containing fraction from the desulfoviridin of Desulfovibrio gigas.
    Skyring GW; Jones HE
    Aust J Biol Sci; 1977 Apr; 30(1-2):21-31. PubMed ID: 901305
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sulphate transport into vesicles prepared from human placental brush border membranes: inhibition by trace element oxides.
    Boyd CA; Shennan DB
    J Physiol; 1986 Oct; 379():367-76. PubMed ID: 3559997
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum.
    Hensen D; Sperling D; Trüper HG; Brune DC; Dahl C
    Mol Microbiol; 2006 Nov; 62(3):794-810. PubMed ID: 16995898
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transport of molybdate by Clostridium pasteurianum.
    Elliott BB; Mortenson LE
    J Bacteriol; 1975 Dec; 124(3):1295-1301. PubMed ID: 364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulphate transport in human placental brush-border membrane vesicles: competitive inhibition by selenate.
    Shennan DB; Boyd CA
    Biochim Biophys Acta; 1986 Jul; 859(1):122-4. PubMed ID: 3718983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of choline O-sulphate utilization in fungi.
    Spencer B; Hussey EC; Orsi BA; Scott JM
    Biochem J; 1968 Jan; 106(2):461-9. PubMed ID: 5637353
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of sulphoquinovosyl diacylglycerol by higher plants.
    Harwood JL
    Biochim Biophys Acta; 1975 Aug; 398(2):224-30. PubMed ID: 1182135
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxidation of thiosulphate and sulphite by Thiobacillus neapolitanus.
    Skłodowska A
    Acta Microbiol Pol; 1985; 34(3-4):271-6. PubMed ID: 2421543
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase.
    Müller FH; Bandeiras TM; Urich T; Teixeira M; Gomes CM; Kletzin A
    Mol Microbiol; 2004 Aug; 53(4):1147-60. PubMed ID: 15306018
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sulphide effects on the physiology of Candidatus Accumulibacter phosphatis type I.
    Rubio-Rincón FJ; Lopez-Vazquez CM; Welles L; van Loosdrecht MC; Brdjanovic D
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1661-1672. PubMed ID: 27830293
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The competition of molybdate and sulphate ions for a transport system in the ovine small intestine.
    Mason J; Cardin CJ
    Res Vet Sci; 1977 May; 22(3):313-5. PubMed ID: 877427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.