BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 6682106)

  • 1. Analysis of the role of microtubules and actin in erythrophore intracellular motility.
    Beckerle MC; Porter KR
    J Cell Biol; 1983 Feb; 96(2):354-62. PubMed ID: 6682106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates.
    Walsh CJ
    Eur J Cell Biol; 2007 Feb; 86(2):85-98. PubMed ID: 17189659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutrophil F-actin and myosin but not microtubules functionally regulate transepithelial migration induced by interleukin 8 across a cultured intestinal epithelial monolayer.
    Hofman P; d'Andrea L; Guzman E; Selva E; Le Negrate G; Far DF; Lemichez E; Boquet P; Rossi B
    Eur Cytokine Netw; 1999 Jun; 10(2):227-36. PubMed ID: 10400829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin cooperates with microtubule motors during organelle transport in melanophores.
    Rogers SL; Gelfand VI
    Curr Biol; 1998 Jan; 8(3):161-4. PubMed ID: 9443916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional in vitro model for studies of intracellular motility in digitonin-permeabilized erythrophores.
    Stearns ME; Ochs RL
    J Cell Biol; 1982 Sep; 94(3):727-39. PubMed ID: 6215414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of microtubules in cell shape and pigment distribution in spreading erythrophores.
    Ochs RL
    Eur J Cell Biol; 1982 Oct; 28(2):226-32. PubMed ID: 7173222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cytomatrix regulates "resolute" transport in erythrophores.
    Stearns ME; Binder LI; Wang M
    Ann N Y Acad Sci; 1986; 466():895-908. PubMed ID: 3460462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirements.
    Luby KJ; Porter KR
    Cell; 1980 Aug; 21(1):13-23. PubMed ID: 7407908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional coordination of microtubule-based and actin-based motility in melanophores.
    Rodionov VI; Hope AJ; Svitkina TM; Borisy GG
    Curr Biol; 1998 Jan; 8(3):165-8. PubMed ID: 9443917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytoplast: a unit structure in chromatophores.
    Porter KR; McNiven MA
    Cell; 1982 May; 29(1):23-32. PubMed ID: 7105183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in the actin cytoskeleton during seismonastic movement of Mimosa pudica.
    Kanzawa N; Hoshino Y; Chiba M; Hoshino D; Kobayashi H; Kamasawa N; Kishi Y; Osumi M; Sameshima M; Tsuchiya T
    Plant Cell Physiol; 2006 Apr; 47(4):531-9. PubMed ID: 16489209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microinjection into an identified axon to study the mechanism of fast axonal transport.
    Goldberg DJ
    Proc Natl Acad Sci U S A; 1982 Aug; 79(15):4818-22. PubMed ID: 6181516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that MAP-2 may be involved in pigment granule transport in squirrel fish erythrophores.
    Stearns ME; Binder LI
    Cell Motil Cytoskeleton; 1987; 7(3):221-34. PubMed ID: 3297355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the mechanism of fast axonal transport by intracellular injection of potentially inhibitory macromolecules: evidence for a possible role of actin filaments.
    Goldberg DJ; Harris DA; Lubit BW; Schwartz JH
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7448-52. PubMed ID: 6164061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new model of reticulopodial motility and shape: evidence for a microtubule-based motor and an actin skeleton.
    Travis JL; Bowser SS
    Cell Motil Cytoskeleton; 1986; 6(1):2-14. PubMed ID: 3698107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement.
    Burnside B; Adler R; O'Connor P
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):1-15. PubMed ID: 6826305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic contractile proteins.
    Pollard TD
    J Cell Biol; 1981 Dec; 91(3 Pt 2):156s-165s. PubMed ID: 6459328
    [No Abstract]   [Full Text] [Related]  

  • 19. Cell motility. Variations on the theme of movement.
    Taylor EW
    Nature; 1993 Jan; 361(6408):115-6. PubMed ID: 8421515
    [No Abstract]   [Full Text] [Related]  

  • 20. Active movement of bundles of actin and myosin filaments from muscle: a simple model for cell motility.
    Higashi-Fujime S
    Cold Spring Harb Symp Quant Biol; 1982; 46 Pt 1():69-75. PubMed ID: 6955090
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.