These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6682758)

  • 1. Regulation of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts by adenine nucleotides.
    Evans CT; Scragg AH; Ratledge C
    Eur J Biochem; 1983 May; 132(3):609-15. PubMed ID: 6682758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts by long-chain fatty acyl-CoA esters.
    Evans CT; Scragg AH; Ratledge C
    Eur J Biochem; 1983 May; 132(3):617-22. PubMed ID: 6682759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms.
    Botham PA; Ratledge C
    J Gen Microbiol; 1979 Oct; 114(2):361-75. PubMed ID: 44315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of citrate and 2-oxoglutarate formation in Candida lipolytica mitochondria by adenine nucleotides.
    Mitsushima K; Shinmyo A; Enatsu T
    Biochim Biophys Acta; 1978 Feb; 538(3):481-92. PubMed ID: 626752
    [No Abstract]   [Full Text] [Related]  

  • 5. A comparative study of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts.
    Evans CT; Scragg AH; Ratledge C
    Eur J Biochem; 1983 Jan; 130(1):195-204. PubMed ID: 6825688
    [No Abstract]   [Full Text] [Related]  

  • 6. Changes in the contents of adenine nucleotides and intermediates of glycolysis and the citric acid cycle in flight muscle of the locust upon flight and their relationship to the control of the cycle.
    Rowan AN; Newsholme EA
    Biochem J; 1979 Jan; 178(1):209-16. PubMed ID: 435278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in intramitochondrial adenine nucleotides in blowfly flight-muscle mitochondria.
    Danks SM; Chappell JB
    Biochem J; 1974 Aug; 142(2):353-8. PubMed ID: 4374197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic regulation of yeast NAD-specific isocitrate dehydrogenase by citrate.
    Gabriel JL; Plaut GW
    Biochemistry; 1991 Mar; 30(10):2594-9. PubMed ID: 2001349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between the malate dependent progesterone and citrate biosynthesis in the mitochondrial fraction of human term placenta. The stimulatory effect of ADP and ATP.
    Swierczynski J; Klimek J; Zelewski L
    J Steroid Biochem; 1986 Feb; 24(2):591-5. PubMed ID: 3702442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids.
    Holdsworth JE; Veenhuis M; Ratledge C
    J Gen Microbiol; 1988 Nov; 134(11):2907-15. PubMed ID: 3254939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart.
    Nichols BJ; Rigoulet M; Denton RM
    Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):461-5. PubMed ID: 7980405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Net adenine nucleotide transport in rat kidney mitochondria.
    Hagen T; Joyal JL; Henke W; Aprille JR
    Arch Biochem Biophys; 1993 Jun; 303(2):195-207. PubMed ID: 8512308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.
    Yoshida K; Hisabori T
    Biochim Biophys Acta; 2016 Jun; 1857(6):810-8. PubMed ID: 26946085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interconversions of mitochondrial pyridine nucleotides.
    Bernofsky C; Utter MF
    Science; 1968 Mar; 159(3821):1362-3. PubMed ID: 4384556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of pyruvate and malate by isolated fat-cell mitochondria.
    Martin BR; Denton RM
    Biochem J; 1971 Nov; 125(1):105-13. PubMed ID: 5158897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate 2-oxoglutarate and malate in flight muscle and isolated mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1975 Mar; 146(3):527-35. PubMed ID: 1147907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citrate formation by rat lung mitochondrial preparations.
    Evans RM; Scholz RW
    Biochim Biophys Acta; 1975 Feb; 381(2):278-91. PubMed ID: 1111591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NADP(H) redox couple in yeast metabolism.
    Bruinenberg PM
    Antonie Van Leeuwenhoek; 1986; 52(5):411-29. PubMed ID: 3789705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanisms regulating citric acid metabolism in the brain].
    Eshchenko ND; Prokhorova MI
    Vopr Biokhim Mozga; 1976; 11():78-88. PubMed ID: 23609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.