These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6684138)

  • 1. Effects of cytochalasins on lymphocytes: mechanism of inhibition of rosette formation.
    Mookerjee BK; Jung CY
    J Immunol; 1983 Sep; 131(3):1126-30. PubMed ID: 6684138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of macrophage C3b receptor function by cytochalasin-sensitive structures.
    Atkinson JP; Michael JM; Chaplin H; Parker CW
    J Immunol; 1977 Apr; 118(4):1292-9. PubMed ID: 557509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of cytochalasins on lymphocytes. Identification of distinct cytochalasin-binding sites in relation to mitogenic response and hexose transport.
    Mookerjee BK; Cuppoletti J; Rampal AL; Jung CY
    J Biol Chem; 1981 Feb; 256(3):1290-300. PubMed ID: 7451506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cytochalasins on lymphocytes: some distinctive features of cytochalasin-E.
    Mookerjee BK; Jung CY
    J Immunopharmacol; 1984; 6(3):185-203. PubMed ID: 6491312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochalasins induce actin polymerization in human leukocytes.
    Rao KM; Padmanabhan J; Cohen HJ
    Cell Motil Cytoskeleton; 1992; 21(1):58-64. PubMed ID: 1540992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of autologous rosette formation by monoclonal antibody to the sheep erythrocyte receptor.
    Scheffel JW; Swartz SJ
    J Immunol; 1982 Apr; 128(4):1930-2. PubMed ID: 7061854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The binding sites of cytochalasin D. II. Their relationship to hexose transport and to cytochalasin B.
    Tannenbaum J; Tanenbaum SW; Godman GC
    J Cell Physiol; 1977 May; 91(2):239-48. PubMed ID: 863973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in cytoskeletal actin content, F-actin distribution, and surface morphology during HL-60 cell volume regulation.
    Hallows KR; Law FY; Packman CH; Knauf PA
    J Cell Physiol; 1996 Apr; 167(1):60-71. PubMed ID: 8698841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The binding sites of cytochalasin D. I. Evidence that they may be peripheral membrane proteins.
    Tannenbaum J; Tanenbaum SW; Godman GC
    J Cell Physiol; 1977 May; 91(2):225-37. PubMed ID: 863972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human T-lymphocyte rosette formation: inhibition by cytochalasin B.
    Cohnen G; Fischer K; Brittinger G
    Immunology; 1975 Aug; 29(2):337-41. PubMed ID: 1080476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two maturation-associated mouse erythrocyte receptors of human B cells. I. Identification of four human B-cell subsets.
    Forbes IJ; Zalewski PD; Valente L; Gee D
    Clin Exp Immunol; 1982 Feb; 47(2):396-404. PubMed ID: 6978783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the mechanism of lymphocyte-mediated cytolysis. V. The use of cytochalasins A and B to dissociate glucose transport from the lytic event.
    Bubbers JE; Henney CS
    J Immunol; 1975 Jul; 115(1):145-49. PubMed ID: 807622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capping of surface immunoglobulin on rabbit and mouse lymphocytes. II. Cytoskeletal involvement in different subpopulations.
    de Groot C; Wormmeester J; Mangnus-Smet C
    Eur J Cell Biol; 1981 Aug; 25(1):202-11. PubMed ID: 6974643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for two mechanisms of ligand-receptor movement on surface-activated platelets.
    Olorundare OE; Simmons SR; Albrecht RM
    Eur J Cell Biol; 1993 Feb; 60(1):131-45. PubMed ID: 8385017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between effects of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro.
    Yahara I; Harada F; Sekita S; Yoshihira K; Natori S
    J Cell Biol; 1982 Jan; 92(1):69-78. PubMed ID: 7199054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of rosette formation between sheep red blood cells and L-A9 fibroblasts.
    Fornüsek L; Viklický V
    Folia Biol (Praha); 1979; 25(6):362-72. PubMed ID: 533684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of AU-rich sequence binding proteins with actin: possible involvement of the actin cytoskeleton in lymphokine mRNA turnover.
    Henics T; Nagy E; Szekeres-Barthó J
    J Cell Physiol; 1997 Oct; 173(1):19-27. PubMed ID: 9326445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Participation of cytoplasmic organelles in E-rosette formation.
    Ishijima SA; Asakura H; Suzuta T
    Immunol Cell Biol; 1991 Dec; 69 ( Pt 6)():403-9. PubMed ID: 1813389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of cytochalasins on lymphocytes: V. Interaction of trifluoperazine and cytochalasin B in inhibition of human lymphocyte proliferation.
    Mookerjee BK; Jung CY
    Immunopharmacol Immunotoxicol; 1990; 12(2):191-209. PubMed ID: 2229921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cytochalasins on F-actin and morphology of Ehrlich ascites tumor cells.
    Mills JW; Falsig Pedersen S; Walmod PS; Hoffmann EK
    Exp Cell Res; 2000 Nov; 261(1):209-19. PubMed ID: 11082291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.