BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 6684238)

  • 1. Effects of octanoate on rat brain and liver mitochondria.
    Parker WD; Haas R; Stumpf DA; Eguren LA
    Neurology; 1983 Oct; 33(10):1374-7. PubMed ID: 6684238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the influence of fatty acids on pyruvate dehydrogenase interconversion in rat-liver mitochondria.
    Walajtys-Rode EI
    Eur J Biochem; 1976 Dec; 71(1):229-37. PubMed ID: 1009949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of octanoate on the rate of oxidative phosphorylation and the associated extramitochondrial ATP/ADP ratios studied with isolated rat liver mitochondria oxidizing pyruvate.
    Schönfeld P; Petzold D; Kunz W
    Biomed Biochim Acta; 1984; 43(10):1055-65. PubMed ID: 6525184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of the ATP/ADP ratio to the site of octanoate activation.
    Otto DA
    J Biol Chem; 1984 May; 259(9):5490-4. PubMed ID: 6715356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of pyruvate dehydrogenase in isolated rat liver mitochondria. Effects of octanoate, oxidation-reduction state, and adenosine triphosphate to adenosine diphosphate ratio.
    Taylor SI; Mukherjee C; Jungas RL
    J Biol Chem; 1975 Mar; 250(6):2028-35. PubMed ID: 1116996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramitochondrial fatty acid activation enhances control strength of adenine nucleotide translocase.
    Schönfeld P; Bohnensack R
    Biomed Biochim Acta; 1991; 50(7):841-9. PubMed ID: 1759963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of energetic steady state, pyruvate concentration, and octanoyl-(--)-carnitine on the relative rates of carboxylation and decarboxylation of pyruvate by rat liver mitochondria.
    Davis-van Thienen W; Davis EJ
    J Biol Chem; 1981 Aug; 256(16):8371-8. PubMed ID: 7263658
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparative effects of chronic ethanol consumption on the properties of mitochondria from rat brain and liver.
    Thayer WS; Rottenberg H
    Alcohol Clin Exp Res; 1992 Feb; 16(1):1-4. PubMed ID: 1532703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of aluminium-induced Alzheimer like condition on oxidative energy metabolism in rat liver, brain and heart mitochondria.
    Swegert CV; Dave KR; Katyare SS
    Mech Ageing Dev; 1999 Dec; 112(1):27-42. PubMed ID: 10656181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes.
    Nobes CD; Hay WW; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12910-5. PubMed ID: 2376580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The effect of p-chloromercuribenzoate on regulation of oxidative phosphorylation by ADP and ATP and stimulation of liver mitochondrial respiration by palmitate].
    Samartsev VN; Zeldi IP; Smirnov AV
    Biokhimiia; 1995 Oct; 60(10):1706-10. PubMed ID: 8555366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octanoic acid inhibits astrocyte volume control: implications for cerebral edema in Reye's syndrome.
    Olson JE; Holtzman D; Sankar R; Lawson C; Rosenberg R
    J Neurochem; 1989 Apr; 52(4):1197-202. PubMed ID: 2538563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the rate of respiration and the protonmotive force. The role of proton conductivity.
    O'Shea PS; Chappell JB
    Biochem J; 1984 Apr; 219(2):401-4. PubMed ID: 6331387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Possible role of adenine nucleotide transport in regulating the respiration of rat liver mitochondria].
    Konstantinov IuM; Liakhovich VV; Panov AV
    Biull Eksp Biol Med; 1976 Feb; 81(2):166-8. PubMed ID: 1276407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria.
    Cunha-Oliveira T; Silva L; Silva AM; Moreno AJ; Oliveira CR; Santos MS
    Toxicol Lett; 2013 Jun; 219(3):298-306. PubMed ID: 23542814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of free fatty acids on hepatic adenine nucleotide content and oxidative metabolism.
    Mannaerts G; Debeer LJ; De Schepper PJ
    Arch Int Physiol Biochim; 1974; 82(2):357-8. PubMed ID: 4135881
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of citrulline synthesis by octanoate and its modulation by adenine nucleotides.
    Lutz WH; Geisbuhler TP; Pollack JD; McClung HJ; Merola AJ
    Biochem Med; 1985 Aug; 34(1):1-10. PubMed ID: 4052056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps.
    Hafner RP; Brand MD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):75-80. PubMed ID: 1708235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of glucagon treatment and starvation of virgin and lactating rats on the rates of oxidation of octanoyl-L-carnitine and octanoate by isolated liver mitochondria.
    Zammit VA
    Biochem J; 1980 Aug; 190(2):293-300. PubMed ID: 7470052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.