BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6684430)

  • 1. Articular cartilage collagen and proteoglycans. Their functional interdependency.
    Broom ND; Poole CA
    Arthritis Rheum; 1983 Sep; 26(9):1111-9. PubMed ID: 6684430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen-collagen versus collagen-proteoglycan interactions in the determination of cartilage strength.
    Broom ND; Silyn-Roberts H
    Arthritis Rheum; 1990 Oct; 33(10):1512-7. PubMed ID: 2222534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage.
    Korhonen RK; Laasanen MS; Töyräs J; Lappalainen R; Helminen HJ; Jurvelin JS
    J Biomech; 2003 Sep; 36(9):1373-9. PubMed ID: 12893046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of proteoglycan extraction on the tensile behavior of articular cartilage.
    Schmidt MB; Mow VC; Chun LE; Eyre DR
    J Orthop Res; 1990 May; 8(3):353-63. PubMed ID: 2324854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure.
    Khalsa PS; Eisenberg SR
    J Biomech; 1997 Jun; 30(6):589-94. PubMed ID: 9165392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined enzymatic degradation of proteoglycans and collagen significantly alters intratissue strains in articular cartilage during cyclic compression.
    Pastrama MI; Ortiz AC; Zevenbergen L; Famaey N; Gsell W; Neu CP; Himmelreich U; Jonkers I
    J Mech Behav Biomed Mater; 2019 Oct; 98():383-394. PubMed ID: 31349141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments.
    Zhu W; Mow VC; Koob TJ; Eyre DR
    J Orthop Res; 1993 Nov; 11(6):771-81. PubMed ID: 8283321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical properties of knee articular cartilage.
    Laasanen MS; Töyräs J; Korhonen RK; Rieppo J; Saarakkala S; Nieminen MT; Hirvonen J; Jurvelin JS
    Biorheology; 2003; 40(1-3):133-40. PubMed ID: 12454397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage.
    Julkunen P; Harjula T; Iivarinen J; Marjanen J; Seppänen K; Närhi T; Arokoski J; Lammi MJ; Brama PA; Jurvelin JS; Helminen HJ
    Osteoarthritis Cartilage; 2009 Dec; 17(12):1628-38. PubMed ID: 19615962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New structural concepts of articular cartilage demonstrated with a physical model.
    Broom ND; Marra DL
    Connect Tissue Res; 1985; 14(1):1-8. PubMed ID: 2934211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage.
    Han EH; Chen SS; Klisch SM; Sah RL
    Biophys J; 2011 Aug; 101(4):916-24. PubMed ID: 21843483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microstructural model of elastostatic properties of articular cartilage in confined compression.
    Bursać P; McGrath CV; Eisenberg SR; Stamenović D
    J Biomech Eng; 2000 Aug; 122(4):347-53. PubMed ID: 11036557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage.
    Poole AR; Pidoux I; Reiner A; Rosenberg L
    J Cell Biol; 1982 Jun; 93(3):921-37. PubMed ID: 7119005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resistance of the mechanical properties of the chondrocyte pericellular matrix to proteoglycan digestion by chondroitinase, aggrecanase, or hyaluronidase.
    Wilusz RE; Guilak F
    J Mech Behav Biomed Mater; 2014 Oct; 38():183-97. PubMed ID: 24156881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive and tensile properties of articular cartilage in axial loading are modulated differently by osmotic environment.
    Korhonen RK; Jurvelin JS
    Med Eng Phys; 2010 Mar; 32(2):155-60. PubMed ID: 19955010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition.
    Broom ND; Poole CA
    J Anat; 1982 Aug; 135(Pt 1):65-82. PubMed ID: 7130057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationships in enzymatically modified articular cartilage.
    Rieppo J; Töyräs J; Nieminen MT; Kovanen V; Hyttinen MM; Korhonen RK; Jurvelin JS; Helminen HJ
    Cells Tissues Organs; 2003; 175(3):121-32. PubMed ID: 14663155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of contaminant proteases in testicular hyaluronidase preparations on the immunological properties of bovine nasal cartilage proteoglycan.
    Keiser HD; Hatcher VB
    Connect Tissue Res; 1979; 6(4):229-33. PubMed ID: 157847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound speed in articular cartilage under mechanical compression.
    Nieminen HJ; Julkunen P; Töyräs J; Jurvelin JS
    Ultrasound Med Biol; 2007 Nov; 33(11):1755-66. PubMed ID: 17693012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-angle X-ray diffraction analysis of the collagen-proteoglycan interactions in articular cartilage.
    Ronzière MC; Berthet-Colominas C; Herbage D
    Biochim Biophys Acta; 1985 Oct; 842(2-3):170-5. PubMed ID: 4052453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.