These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6684430)

  • 41. Ultrasound detection of trypsin-treated articular cartilage: its association with cartilaginous proteoglycans assessed by histological and biochemical methods.
    Qin L; Zheng Y; Leung C; Mak A; Choy W; Chan K
    J Bone Miner Metab; 2002; 20(5):281-7. PubMed ID: 12203033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro.
    Jones IL; Klämfeldt A; Sandström T
    Clin Orthop Relat Res; 1982 May; (165):283-9. PubMed ID: 7075072
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of selective matrix degradation on the short-term compressive properties of adult human articular cartilage.
    Bader DL; Kempson GE; Egan J; Gilbey W; Barrett AJ
    Biochim Biophys Acta; 1992 Apr; 1116(2):147-54. PubMed ID: 1581343
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound.
    Töyräs J; Rieppo J; Nieminen MT; Helminen HJ; Jurvelin JS
    Phys Med Biol; 1999 Nov; 44(11):2723-33. PubMed ID: 10588280
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy.
    Stolz M; Raiteri R; Daniels AU; VanLandingham MR; Baschong W; Aebi U
    Biophys J; 2004 May; 86(5):3269-83. PubMed ID: 15111440
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.
    Mäkelä JTA; Korhonen RK
    J Biomech; 2016 Jun; 49(9):1734-1741. PubMed ID: 27130474
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Collagen network primarily controls Poisson's ratio of bovine articular cartilage in compression.
    Kiviranta P; Rieppo J; Korhonen RK; Julkunen P; Töyräs J; Jurvelin JS
    J Orthop Res; 2006 Apr; 24(4):690-9. PubMed ID: 16514661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Articular cartilage response to a sliding load using two different-sized spherical indenters1.
    Schätti OR; Colombo V; Torzilli PA; Gallo LM
    Biorheology; 2018; 54(2-4):109-126. PubMed ID: 29376845
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies.
    Buckwalter JA; Roughley PJ; Rosenberg LC
    Microsc Res Tech; 1994 Aug; 28(5):398-408. PubMed ID: 7919527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Abnormal softening in articular cartilage: its relationship to the collagen framework.
    Broom ND
    Arthritis Rheum; 1982 Oct; 25(10):1209-16. PubMed ID: 6182889
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The structure, physiology, and biomechanics of articular cartilage: injury and repair].
    Tatari H
    Acta Orthop Traumatol Turc; 2007; 41 Suppl 2():1-5. PubMed ID: 18180577
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of biomechanical conditioning on cartilaginous tissue formation in vitro.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Hong J; Kandel RA
    J Bone Joint Surg Am; 2003; 85-A Suppl 2():101-5. PubMed ID: 12721351
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the ultrastructure of softened cartilage: a possible model for structural transformation.
    Chen MH; Broom N
    J Anat; 1998 Apr; 192 ( Pt 3)(Pt 3):329-41. PubMed ID: 9688499
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteoglycan degradation mimics static compression by altering the natural gradients in fibrillar organisation in cartilage.
    Inamdar SR; Barbieri E; Terrill NJ; Knight MM; Gupta HS
    Acta Biomater; 2019 Oct; 97():437-450. PubMed ID: 31374336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage.
    Ng KW; Kugler LE; Doty SB; Ateshian GA; Hung CT
    Osteoarthritis Cartilage; 2009 Feb; 17(2):220-7. PubMed ID: 18801665
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.
    Buschmann MD; Grodzinsky AJ
    J Biomech Eng; 1995 May; 117(2):179-92. PubMed ID: 7666655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An enzymatically induced structural transformation in articular cartilage. Its significance with respect to matrix breakdown.
    Broom ND
    Arthritis Rheum; 1988 Feb; 31(2):210-8. PubMed ID: 2831907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.
    Quinn TM; Morel V
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):73-82. PubMed ID: 16715320
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrastructural analysis of the adaptation of articular cartilage to mechanical stimulation.
    Greco F; Specchia N; Falciglia F; Toesca A; Nori S
    Ital J Orthop Traumatol; 1992; 18(3):311-21. PubMed ID: 1308876
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Compressive properties and function-composition relationships of developing bovine articular cartilage.
    Williamson AK; Chen AC; Sah RL
    J Orthop Res; 2001 Nov; 19(6):1113-21. PubMed ID: 11781013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.