These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6685167)

  • 21. Replacement of posterior by anterior endoderm reduces sterility in embryos from inverted eggs of Xenopus laevis.
    Cleine JH
    J Embryol Exp Morphol; 1986 Jun; 94():83-93. PubMed ID: 3760765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dorsoventral polarization and formation of dorsal axial structures in Xenopus laevis: analyses using UV irradiation of the full-grown oocyte and after fertilization.
    Mise N; Wakahara M
    Int J Dev Biol; 1994 Sep; 38(3):447-53. PubMed ID: 7848828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The formation of the gonadal ridge in Xenopus laevis. I. A light and transmission electron microscope study.
    Wylie CC; Heasman J
    J Embryol Exp Morphol; 1976 Feb; 35(1):125-38. PubMed ID: 1270975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of the factors producing the periodic activities responsible for synchronous cleavage in Xenopus embryos.
    Shinagawa A
    J Embryol Exp Morphol; 1985 Feb; 85():33-46. PubMed ID: 4039356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The formation of the gonadal ridge in Xenopus laevis. II. A scanning electron microscope study.
    Wylie CC; Bancroft M; Heasman J
    J Embryol Exp Morphol; 1976 Feb; 35(1):139-48. PubMed ID: 1270976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two UV-sensitive targets in dorsoanterior specification of frog embryos.
    Elinson RP; Pasceri P
    Development; 1989 Jul; 106(3):511-8. PubMed ID: 2598822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early cellular interactions promote embryonic axis formation in Xenopus laevis.
    Gimlich RL; Gerhart JC
    Dev Biol; 1984 Jul; 104(1):117-30. PubMed ID: 6203792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Events in the germ cell lineage after entry of the primordial germ cells into the genital ridges in normal and u.v.-irradiated Xenopus laevis.
    Züst B; Dixon KE
    J Embryol Exp Morphol; 1977 Oct; 41():33-46. PubMed ID: 591877
    [No Abstract]   [Full Text] [Related]  

  • 29. Identification of asymmetrically localized transcripts along the animal-vegetal axis of the Xenopus egg.
    Kataoka K; Tazaki A; Kitayama A; Ueno N; Watanabe K; Mochii M
    Dev Growth Differ; 2005 Oct; 47(8):511-21. PubMed ID: 16287483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualization of the Xenopus primordial germ cells using a green fluorescent protein controlled by cis elements of the 3' untranslated region of the DEADSouth gene.
    Kataoka K; Yamaguchi T; Orii H; Tazaki A; Watanabe K; Mochii M
    Mech Dev; 2006 Oct; 123(10):746-60. PubMed ID: 16945508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-autonomous and inductive processes among three embryonic domains control dorsal-ventral and anterior-posterior development of Xenopus laevis.
    Sakai M
    Dev Growth Differ; 2008 Jan; 50(1):49-62. PubMed ID: 17999689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designation of the anterior/posterior axis in pregastrula Xenopus laevis.
    Lane MC; Sheets MD
    Dev Biol; 2000 Sep; 225(1):37-58. PubMed ID: 10964463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification.
    Vincent JP; Gerhart JC
    Dev Biol; 1987 Oct; 123(2):526-39. PubMed ID: 3653523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blastopore formation in the animal hemisphere: functional inversion of gastrulation by centrifugation of Xenopus laevis eggs.
    Black SD; Crutchfield AN; Murphy MD; Swain TC
    Gravit Space Biol Bull; 1998 May; 11(2):15-21. PubMed ID: 11540634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Association of an ultraviolet irradiation sensitive cytoplasmic localization with the future dorsal side of the amphibian egg.
    Malacinski GM; Benford H; Chung HM
    J Exp Zool; 1975 Jan; 191(1):97-110. PubMed ID: 1078573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulating and imaging the early Xenopus laevis embryo.
    Danilchik MV
    Methods Mol Biol; 2011; 770():21-54. PubMed ID: 21805260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-frequency twinning of Xenopus laevis embryos from eggs centrifuged before first cleavage.
    Black SD; Gerhart JC
    Dev Biol; 1986 Jul; 116(1):228-40. PubMed ID: 3488238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three regions of the 32-cell embryo of Xenopus laevis essential for formation of a complete tadpole.
    Kageura H
    Dev Biol; 1995 Aug; 170(2):376-86. PubMed ID: 7649370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The invasion of cultured cell layers and intact epithelia.
    Swan AP; Heasman J; Wylie CC
    Scan Electron Microsc; 1981; 4():99-104. PubMed ID: 7347430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversal of developmental competence in inverted amphibian eggs.
    Chung HM; Malacinski GM
    J Embryol Exp Morphol; 1983 Feb; 73():207-20. PubMed ID: 6683745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.