These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 6686137)

  • 1. Recovery from short term intense exercise: its relation to capillary supply and blood lactate concentration.
    Tesch PA; Wright JE
    Eur J Appl Physiol Occup Physiol; 1983; 52(1):98-103. PubMed ID: 6686137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate accumulation in muscle and blood during submaximal exercise.
    Tesch PA; Daniels WL; Sharp DS
    Acta Physiol Scand; 1982 Mar; 114(3):441-6. PubMed ID: 7136774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of muscle metabolic characteristics on physical performance.
    Tesch PA; Wright JE; Vogel JA; Daniels WL; Sharp DS; Sjödin B
    Eur J Appl Physiol Occup Physiol; 1985; 54(3):237-43. PubMed ID: 4065107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions.
    Colliander EB; Dudley GA; Tesch PA
    Eur J Appl Physiol Occup Physiol; 1988; 58(1-2):81-6. PubMed ID: 3203680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human skeletal muscle function and metabolism during intense exercise at high O2 and N2 pressures.
    Eiken O; Hesser CM; Lind F; Thorsson A; Tesch PA
    J Appl Physiol (1985); 1987 Aug; 63(2):571-5. PubMed ID: 3654415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
    Bangsbo J; Johansen L; Graham T; Saltin B
    J Physiol; 1993 Mar; 462():115-33. PubMed ID: 8331579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of lactate accumulation of EMG frequency spectrum during repeated concentric contractions.
    Tesch PA; Komi PV; Jacobs I; Karlsson J; Viitasalo JT
    Acta Physiol Scand; 1983 Sep; 119(1):61-7. PubMed ID: 6650206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power output and fatigue of human muscle in maximal cycling exercise.
    McCartney N; Heigenhauser GJ; Jones NL
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jul; 55(1 Pt 1):218-24. PubMed ID: 6885573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of recovery from intensive exercise to the oxidative potential of skeletal muscle.
    Jansson E; Dudley GA; Norman B; Tesch PA
    Acta Physiol Scand; 1990 May; 139(1):147-52. PubMed ID: 2356745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between muscle lactate accumulation and surface EMG activities during isokinetic contractions in man.
    Horita T; Ishiko T
    Eur J Appl Physiol Occup Physiol; 1987; 56(1):18-23. PubMed ID: 3830137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance and muscle metabolite changes in exercise with repeated maximal dynamic contractions.
    Karlsson J; Piehl K; Knuttgen HG
    Int J Sports Med; 1981 May; 2(2):110-3. PubMed ID: 7333740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man.
    Bangsbo J; Graham TE; Kiens B; Saltin B
    J Physiol; 1992; 451():205-27. PubMed ID: 1403811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of short-term exercise training on peak-torque are time- and fiber-type dependent.
    Ureczky D; Vácz G; Costa A; Kopper B; Lacza Z; Hortobágyi T; Tihanyi J
    J Strength Cond Res; 2014 Aug; 28(8):2204-13. PubMed ID: 24531434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate and H+ uptake in inactive muscles during intense exercise in man.
    Bangsbo J; Aagaard T; Olsen M; Kiens B; Turcotte LP; Richter EA
    J Physiol; 1995 Oct; 488 ( Pt 1)(Pt 1):219-29. PubMed ID: 8568658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pH on maximal power output and fatigue during short-term dynamic exercise.
    McCartney N; Heigenhauser GJ; Jones NL
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jul; 55(1 Pt 1):225-9. PubMed ID: 6885575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of isokinetic exercise on the relationship between blood lactate and muscle fatigue.
    Douris PC
    J Orthop Sports Phys Ther; 1993 Jan; 17(1):31-5. PubMed ID: 8467334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate release in relation to tissue lactate in human skeletal muscle during exercise.
    Jorfeldt L; Juhlin-Dannfelt A; Karlsson J
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Mar; 44(3):350-2. PubMed ID: 632175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary blood lactate concentrations during intermittent all-out exercise.
    Mognoni P; Redolfi N; Colombini A; Sirtori MS
    J Sports Sci; 1997 Oct; 15(5):469-75. PubMed ID: 9386204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuro-muscular fatigue and recovery dynamics following anaerobic interval workload.
    Skof B; Strojnik V
    Int J Sports Med; 2006 Mar; 27(3):220-5. PubMed ID: 16541378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular reflexes during sustained handgrip exercise: role of muscle fibre composition, potassium and lactate.
    Sadamoto T; Mutoh Y; Miyashita M
    Eur J Appl Physiol Occup Physiol; 1992; 65(4):324-30. PubMed ID: 1425632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.