These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 6687471)
1. Sampling Culex tarsalis (Diptera: Culicidae) immatures on rice fields treated with combinations of mosquitofish and Bacillus thuringiensis H-14 toxin. Stewart RJ; Schaefer CH; Miura T J Econ Entomol; 1983 Feb; 76(1):91-5. PubMed ID: 6687471 [No Abstract] [Full Text] [Related]
2. An evaluation of the mosquitofish, Gambusia affinis, and the inland silverside, Menidia beryllina, as mosquito control agents in California wild rice fields. Kramer VL; Garcia R; Colwell AE J Am Mosq Control Assoc; 1987 Dec; 3(4):626-32. PubMed ID: 2904970 [TBL] [Abstract][Full Text] [Related]
3. An evaluation of Gambusia affinis and Bacillus thuringiensis var. israelensis as mosquito control agents in California wild rice fields. Kramer VL; Garcia R; Colwell AE J Am Mosq Control Assoc; 1988 Dec; 4(4):470-8. PubMed ID: 2906358 [TBL] [Abstract][Full Text] [Related]
4. Lack of cross-resistance to Cry19A from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to cry toxins from Bacillus thuringiensis subsp. israelensis. Wirth MC; Delécluse A; Walton WE Appl Environ Microbiol; 2001 Apr; 67(4):1956-8. PubMed ID: 11282656 [TBL] [Abstract][Full Text] [Related]
5. Cyt1Ab1 and Cyt2Ba1 from Bacillus thuringiensis subsp. medellin and B. thuringiensis subsp. israelensis Synergize Bacillus sphaericus against Aedes aegypti and resistant Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Delécluse A; Walton WE Appl Environ Microbiol; 2001 Jul; 67(7):3280-4. PubMed ID: 11425753 [TBL] [Abstract][Full Text] [Related]
6. Prey selection by mosquitofish (Gambusia affinis) in California rice fields: effect of vegetation and prey species. Linden AL; Cech JJ J Am Mosq Control Assoc; 1990 Mar; 6(1):115-20. PubMed ID: 2324716 [TBL] [Abstract][Full Text] [Related]
7. Evolution of Resistance in Culex quinquefasciatus (Say) Selected With a Recombinant Bacillus thuringiensis Strain-Producing Cyt1Aa and Cry11Ba, and the Binary Toxin, Bin, From Lysinibacillus sphaericus. Wirth MC; Walton WE; Federici BA J Med Entomol; 2015 Sep; 52(5):1028-35. PubMed ID: 26336254 [TBL] [Abstract][Full Text] [Related]
8. [Biological control of Culicidae and Simuliidae: bacterial insecticides]. Ruas Neto AL; de Oliveira CM Rev Bras Malariol Doencas Trop; 1985; 37():61-75. PubMed ID: 3031748 [No Abstract] [Full Text] [Related]
9. Bioassay of some Egyptian isolates of Bacillus thuringiensis against Culex pipiens (Diptera: Culicidae). Zayed ME; Bream AS Commun Agric Appl Biol Sci; 2004; 69(3):219-28. PubMed ID: 15759417 [TBL] [Abstract][Full Text] [Related]
10. Effect of certain formulations of the bacterial larvicide, Bacillus thuringiensis, serotype H-14 on Culex pipiens L. in Egypt. Merdan AI; el-Husseni MM; Abu-Bakr H; Rady MM J Egypt Soc Parasitol; 1991 Aug; 21(2):403-10. PubMed ID: 1875070 [No Abstract] [Full Text] [Related]
11. Factors affecting distribution of Bacillus thuringiensis serotype H-14 during flooding of rice fields. McLaughlin RE; Vidrine MF J Am Mosq Control Assoc; 1985 Sep; 1(3):381-4. PubMed ID: 2906679 [No Abstract] [Full Text] [Related]
12. Mesocyclops aspericornis (Copepoda) and Bacillus thuringiensis var. israelensis for the biological control of Aedes and Culex vectors (Diptera: Culicidae) breeding in crab holes, tree holes, and artificial containers. Rivière F; Kay BH; Klein JM; Séchan Y J Med Entomol; 1987 Jul; 24(4):425-30. PubMed ID: 3625718 [No Abstract] [Full Text] [Related]
13. Effect of rice husbandry on mosquito breeding at Mwea Rice Irrigation Scheme with reference to biocontrol strategies. Asimeng EJ; Mutinga MJ J Am Mosq Control Assoc; 1993 Mar; 9(1):17-22. PubMed ID: 8096871 [TBL] [Abstract][Full Text] [Related]
14. [Characteristics of Bacillus thuringiensis var. israelensis and its effect on mosquito larvae (Diptera: Culicidae)]. Müller P Angew Parasitol; 1984 Aug; 25(3):157-63. PubMed ID: 6149708 [No Abstract] [Full Text] [Related]
15. Use of an indigenous fish species, Fundulus zebrinus, in a mosquito abatement program: a field comparison with the mosquitofish, Gambusia affinis. Nelson SM; Keenan LC J Am Mosq Control Assoc; 1992 Sep; 8(3):301-4. PubMed ID: 1357089 [TBL] [Abstract][Full Text] [Related]
16. Evolution of resistance toward Bacillus sphaericus or a mixture of B. sphaericus+Cyt1A from Bacillus thuringiensis, in the mosquito, Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Jiannino JA; Federici BA; Walton WE J Invertebr Pathol; 2005 Feb; 88(2):154-62. PubMed ID: 15766932 [TBL] [Abstract][Full Text] [Related]
17. Cytolytic toxin Cyt1Aa of Bacillus thuringiensis synergizes the mosquitocidal toxin Mtx1 of Bacillus sphaericus. Zhang B; Liu M; Yang Y; Yuan Z Biosci Biotechnol Biochem; 2006 Sep; 70(9):2199-204. PubMed ID: 16960378 [TBL] [Abstract][Full Text] [Related]
18. [Effect of the conditions for mosquito larval development on their sensitivity to bacterial insecticides]. Rasnitsyn SP; Voĭtsik AA; Zvantsov AB Med Parazitol (Mosk); 1988; (1):15-8. PubMed ID: 3367856 [No Abstract] [Full Text] [Related]
19. Marginal cross-resistance to mosquitocidal Bacillus thuringiensis strains in Cry11A-resistant larvae: presence of Cry11A-like toxins in these strains. Cheong H; Dhesi RK; Gill SS FEMS Microbiol Lett; 1997 Aug; 153(2):419-24. PubMed ID: 9271871 [TBL] [Abstract][Full Text] [Related]
20. Effect of Bacillus thuringiensis var. israelensis on some Egyptian mosquito larvae. Zohdy NZ; Matter MM J Egypt Soc Parasitol; 1982 Dec; 12(2):349-57. PubMed ID: 6130117 [No Abstract] [Full Text] [Related] [Next] [New Search]