BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 6688185)

  • 1. Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation.
    Düzgüneş N; Wilschut J; Hong K; Fraley R; Perry C; Friend DS; James TL; Papahadjopoulos D
    Biochim Biophys Acta; 1983 Jul; 732(1):289-99. PubMed ID: 6688185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic characterization of the pretransition of unilamellar dipalmitoyl-phosphatidylcholine vesicles.
    Lichtenberg D; Menashe M; Donaldson S; Biltonen RL
    Lipids; 1984 Jun; 19(6):395-400. PubMed ID: 6547502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase behavior of large unilamellar vesicles composed of synthetic phospholipids.
    Parente RA; Lentz BR
    Biochemistry; 1984 May; 23(11):2353-62. PubMed ID: 6477871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the freezing behavior of liposomes as a tool to understand the cryopreservation procedures.
    Siow LF; Rades T; Lim MH
    Cryobiology; 2007 Dec; 55(3):210-21. PubMed ID: 17905224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the thermotropic properties of large unilamellar vesicles (LUV).
    Vandenbranden M; Stil C; Brasseur R; Ruysschaert JM
    Experientia; 1984 Jul; 40(7):715-7. PubMed ID: 6745401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the origin of the melting profile of unilamellar phosphatidylcholine liposomes by measuring the turbidity of its suspensions.
    Maleš P; Pem B; Petrov D; Jurašin DD; Bakarić D
    Soft Matter; 2022 Sep; 18(35):6703-6715. PubMed ID: 36017811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and phase behavior of two types of unilamellar vesicles prepared from synthetic phosphatidylcholines studied by freeze-fracture electron microscopy and calorimetry.
    Parente RA; Höchli M; Lentz BR
    Biochim Biophys Acta; 1985 Jan; 812(2):493-502. PubMed ID: 3838143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closer look at the calorimetric lower transition in lipid bilayers.
    Korono SA; Nagle JF
    Chem Phys Lipids; 2024 Mar; 259():105366. PubMed ID: 38081501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of the main phase transition of dinervonoylphosphocholine giant liposomes by fluorescence microscopy.
    Metso AJ; Zhao H; Tuunainen I; Kinnunen PK
    Biochim Biophys Acta; 2005 Jul; 1713(2):83-91. PubMed ID: 15979562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles.
    Wu H; Zheng L; Lentz BR
    Biochemistry; 1996 Sep; 35(38):12602-11. PubMed ID: 8823198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of unilamellar vesicle size on ethanol-induced interdigitation in dipalmitoylphosphatidylcholine.
    Komatsu H; Guy PT; Rowe ES
    Chem Phys Lipids; 1993 Apr; 65(1):11-21. PubMed ID: 8348673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous fusion of phosphatidylcholine small unilamellar vesicles in the fluid phase.
    Lentz BR; Carpenter TJ; Alford DR
    Biochemistry; 1987 Aug; 26(17):5389-97. PubMed ID: 3676258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on lung surfactant replacement in respiratory distress syndrome. Rapid film formation from binary mixed liposomes.
    Obladen M; Popp D; Schöll C; Schwarz H; Jähnig F
    Biochim Biophys Acta; 1983 Nov; 735(2):215-24. PubMed ID: 6688738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dye permeability at phase transitions in single and binary component phospholipid bilayers.
    Braganza LF; Blott BH; Coe TJ; Melville D
    Biochim Biophys Acta; 1983 Jun; 731(2):137-44. PubMed ID: 6687808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles.
    Drazenovic J; Wang H; Roth K; Zhang J; Ahmed S; Chen Y; Bothun G; Wunder SL
    Biochim Biophys Acta; 2015 Feb; 1848(2):532-43. PubMed ID: 25445167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase behavior of mixed phosphatidylglycerol/phosphatidylcholine multilamellar and unilamellar vesicles.
    Lentz BR; Alford DR; Hoechli M; Dombrose FA
    Biochemistry; 1982 Aug; 21(18):4212-9. PubMed ID: 7126537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic absorption and permeability for liposomes near phase transition.
    Maynard VM; Magin RL; Dunn F
    Chem Phys Lipids; 1985 Apr; 37(1):1-12. PubMed ID: 4006036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous vesiculation of large multilamellar vesicles composed of saturated phosphatidylcholine and phosphatidylglycerol mixtures.
    Madden TD; Tilcock CP; Wong K; Cullis PR
    Biochemistry; 1988 Nov; 27(24):8724-30. PubMed ID: 3242602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tamoxifen perturbs lipid bilayer order and permeability: comparison of DSC, fluorescence anisotropy, laurdan generalized polarization and carboxyfluorescein leakage studies.
    Engelk M; Bojarski P; Bloss R; Diehl H
    Biophys Chem; 2001 Apr; 90(2):157-73. PubMed ID: 11352274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryo-responses of two types of large unilamellar vesicles in the presence of non-permeable or permeable cryoprotecting agents.
    Siow LF; Rades T; Lim MH
    Cryobiology; 2008 Dec; 57(3):276-85. PubMed ID: 18854181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.