These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6689316)

  • 1. Algorithm for calculating theoretical probabilities of patterns generated by sequential inequality testing.
    Marczynski GT
    Int J Biomed Comput; 1983 Nov; 14(6):463-86. PubMed ID: 6689316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal patterns, their distribution and redundancy in trains of spontaneous neuronal spike intervals of the feline hippocampus studied with a non-parametric technique.
    Brudno S; Marczynski TJ
    Brain Res; 1977 Apr; 125(1):65-89. PubMed ID: 192416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal firing patterns in the feline hippocampus during sleep and wakefulness.
    Marczynski TJ; Burns LL; Marczynski GT
    Brain Res; 1980 Mar; 185(1):139-60. PubMed ID: 7353172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional probability-based significance tests for sequential patterns in multineuronal spike trains.
    Sastry PS; Unnikrishnan KP
    Neural Comput; 2010 Apr; 22(4):1025-59. PubMed ID: 19922295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual attention and neuronal firing patterns in the feline pulvinar nucleus of thalamus.
    Marczynski TJ; Wei JY; Burns LL; Choi SY; Chen E; Marczynski GT
    Brain Res Bull; 1982 Jun; 8(6):565-80. PubMed ID: 7139354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recurring discharge patterns in multiple spike trains. II. Application in forebrain areas related to cardiac and respiratory control during different sleep-waking states.
    Frostig RD; Frysinger RC; Harper RM
    Biol Cybern; 1990; 62(6):495-502. PubMed ID: 2357473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stochastic properties of input spike trains control neuronal arithmetic.
    Bures Z
    Biol Cybern; 2012 Feb; 106(2):111-22. PubMed ID: 22460694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution.
    Peyrache A; Benchenane K; Khamassi M; Wiener SI; Battaglia FP
    J Comput Neurosci; 2010 Aug; 29(1-2):309-325. PubMed ID: 19529888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithms for computing spike time distance and point process prototypes with application to feline neuronal responses to acoustic stimuli.
    Diez DM; Schoenberg FP; Woody CD
    J Neurosci Methods; 2012 Jan; 203(1):186-92. PubMed ID: 21933681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep-wakefulness: inverse deviation from randomness of neuronal firing patterns in the feline thalamus. A new form of homeostasis?
    Marczynski TJ; Burns LL; Livezey GT
    Experientia; 1983 Jul; 39(7):795-7. PubMed ID: 6683199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model.
    Wiener MC; Richmond BJ
    J Neurosci; 2003 Mar; 23(6):2394-406. PubMed ID: 12657699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.
    Gutnisky DA; Josić K
    J Neurophysiol; 2010 May; 103(5):2912-30. PubMed ID: 20032244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic properties of spontaneous unit discharges in somatosensory cortex and mesencephalic reticular formation during sleep-waking states.
    Yamamoto M; Nakahama H
    J Neurophysiol; 1983 May; 49(5):1182-98. PubMed ID: 6864245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale detection of rate changes in spike trains with weak dependencies.
    Messer M; Costa KM; Roeper J; Schneider G
    J Comput Neurosci; 2017 Apr; 42(2):187-201. PubMed ID: 28025784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains.
    Perkel DH; Gerstein GL; Moore GP
    Biophys J; 1967 Jul; 7(4):419-40. PubMed ID: 4292792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution-free graphical and statistical analysis of serial dependence in neuronal spike trains.
    Rhoades BK; Weil JC; Kowalski JM; Gross GW
    J Neurosci Methods; 1996 Jan; 64(1):25-37. PubMed ID: 8869481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical significance of sequential firing patterns in multi-neuronal spike trains.
    Diekman CO; Sastry PS; Unnikrishnan KP
    J Neurosci Methods; 2009 Sep; 182(2):279-84. PubMed ID: 19559053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Span: spike pattern association neuron for learning spatio-temporal spike patterns.
    Mohemmed A; Schliebs S; Matsuda S; Kasabov N
    Int J Neural Syst; 2012 Aug; 22(4):1250012. PubMed ID: 22830962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A continuous entropy rate estimator for spike trains using a K-means-based context tree.
    Lin TW; Reeke GN
    Neural Comput; 2010 Apr; 22(4):998-1024. PubMed ID: 19922298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.