These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6689326)

  • 21. Neural mechanisms of tone-on-tone masking: patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in the chinchilla auditory nerve.
    Sinex DG; Havey DC
    J Neurophysiol; 1986 Dec; 56(6):1763-80. PubMed ID: 3806187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The perceptual effects of current pulse duration in electrical stimulation of the auditory nerve.
    McKay CM; McDermott HJ
    J Acoust Soc Am; 1999 Aug; 106(2):998-1009. PubMed ID: 10462805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electric-acoustic forward masking in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Krüger B; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2018 Jul; 364():25-37. PubMed ID: 29673567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation.
    Carlyon RP; van Wieringen A; Deeks JM; Long CJ; Lyzenga J; Wouters J
    Hear Res; 2005 Jul; 205(1-2):210-24. PubMed ID: 15953530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics.
    Shannon RV
    Hear Res; 1983 Aug; 11(2):157-89. PubMed ID: 6619003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition.
    Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA
    Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loudness summation, masking, and temporal interaction for sensations produced by electric stimulation of two sites in the human cochlea.
    Tong YC; Clark GM
    J Acoust Soc Am; 1986 Jun; 79(6):1958-66. PubMed ID: 3722606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical stimulation with multichannel electrodes in deaf patients.
    Burian K; Hochmair E; Hochmair-Desoyer I; Lessel MR
    Audiology; 1980; 19(2):128-36. PubMed ID: 6892764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones.
    Kawase T; Delgutte B; Liberman MC
    J Neurophysiol; 1993 Dec; 70(6):2533-49. PubMed ID: 8120597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Encoding and decoding of auditory signals in relation to human speech and its application to human cochlear implants.
    Dillier N; Spillmann T; Fisch UP; Leifer LJ
    Audiology; 1980; 19(2):146-63. PubMed ID: 6892766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Threshold and loudness functions for pulsatile stimulation of cochlear implants.
    Shannon RV
    Hear Res; 1985 May; 18(2):135-43. PubMed ID: 3840159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency threshold curves and simultaneous masking functions in high-threshold, broadly-tuned, fibres of the guinea pig auditory nerve.
    Pickles JO
    Hear Res; 1984 Oct; 16(1):91-9. PubMed ID: 6511675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Forward masked excitation patterns in multielectrode electrical stimulation.
    Chatterjee M; Shannon RV
    J Acoust Soc Am; 1998 May; 103(5 Pt 1):2565-72. PubMed ID: 9604350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Place specificity of monopolar and tripolar stimuli in cochlear implants: the influence of residual masking.
    Fielden CA; Kluk K; McKay CM
    J Acoust Soc Am; 2013 Jun; 133(6):4109-23. PubMed ID: 23742363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Physiological basis for a cochlear prosthesis (author's transl)].
    Klinke R; Hartmann R
    Arch Otorhinolaryngol; 1979; 223(1):77-137. PubMed ID: 383060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Examination to possibilities of a physiological fitting of cochlear implants].
    Braunschweig T; Schelhorn-Neise P; Biedermann F; Weisser P
    Laryngorhinootologie; 2004 Jun; 83(6):387-90. PubMed ID: 15197679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Across-site variation in detection thresholds and maximum comfortable loudness levels for cochlear implants.
    Pfingst BE; Xu L
    J Assoc Res Otolaryngol; 2004 Mar; 5(1):11-24. PubMed ID: 14605920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single- and multi-channel modulation detection in cochlear implant users.
    Galvin JJ; Oba S; Fu QJ; Başkent D
    PLoS One; 2014; 9(6):e99338. PubMed ID: 24918605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adding simultaneous stimulating channels to reduce power consumption in cochlear implants.
    Langner F; Saoji AA; Büchner A; Nogueira W
    Hear Res; 2017 Mar; 345():96-107. PubMed ID: 28104408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.