These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6690215)

  • 21. Accumulation and incorporation of radiolabeled choline into cultured rabbit lenses: evidence for a choline transport system.
    Kador PF; Jernigan HM; Kinoshita JH
    Exp Eye Res; 1980 Jan; 30(1):1-11. PubMed ID: 7363961
    [No Abstract]   [Full Text] [Related]  

  • 22. Ascorbic acid and the eye lens.
    Varma SD; Richards RD
    Ophthalmic Res; 1988; 20(3):164-73. PubMed ID: 3186190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combination of glycemic and oxidative stress in lens: implications in augmentation of cataract formation in diabetes.
    Hegde KR; Varma SD
    Free Radic Res; 2005 May; 39(5):513-7. PubMed ID: 16036327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylcholine and phosphorylethanolamine in human and rhesus monkey lenses.
    Jernigan HM; Zigler JS
    Exp Eye Res; 1989 Nov; 49(5):901-9. PubMed ID: 2591504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The inhibitory influence of endothelin on active sodium-potassium transport in porcine lens.
    Okafor MC; Delamere NA
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1018-23. PubMed ID: 11274080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutathione and lens epithelial function.
    Giblin FJ; Chakrapani B; Reddy VN
    Invest Ophthalmol; 1976 May; 15(5):381-93. PubMed ID: 131114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenosine inhibits choline kinase activity and decreases the phosphorylation of choline in striatal synaptosomes.
    Wecker L; Reinhardt RR
    J Neurochem; 1988 Jun; 50(6):1945-51. PubMed ID: 2836562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pro-oxidant activation of ocular reductants. 1. Copper and riboflavin stimulate ascorbate oxidation causing lens epithelial cytotoxicity in vitro.
    Wolff SP; Wang GM; Spector A
    Exp Eye Res; 1987 Dec; 45(6):777-89. PubMed ID: 2828093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of calcium on the rabbit lens sodium pump.
    Delamere NA; Paterson CA; Borchman D; Manning RE
    Invest Ophthalmol Vis Sci; 1993 Feb; 34(2):405-12. PubMed ID: 8382668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thrombin inhibits active sodium-potassium transport in porcine lens.
    Okafor MC; Dean WL; Delamere NA
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2033-8. PubMed ID: 10440258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Singlet oxygen-induced damage to rat lenses in vitro: protection by anisyldithiolthione.
    Tissie G; Latour E; Coquelet C; Bonne C
    Adv Exp Med Biol; 1990; 264():529-32. PubMed ID: 2244535
    [No Abstract]   [Full Text] [Related]  

  • 32. Riboflavin-photosensitized anaerobic modification of rat lens proteins. A correlation with age-related changes.
    Ugarte R; Edwards AM; Diez MS; Valenzuela A; Silva E
    J Photochem Photobiol B; 1992 Apr; 13(2):161-8. PubMed ID: 1506988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carrier mediated transport of choline in rat lens.
    Jernigan HM; Kador PF; Kinoshita JH
    Exp Eye Res; 1981 Jun; 32(6):709-17. PubMed ID: 7250222
    [No Abstract]   [Full Text] [Related]  

  • 34. Lens membrane damage associated with cryoextraction.
    Hightower KR; Reddy VN
    Invest Ophthalmol Vis Sci; 1983 Nov; 24(11):1531-4. PubMed ID: 6642934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro photochemical cataract in mice lacking copper-zinc superoxide dismutase.
    Behndig A; Karlsson K; Reaume AG; Sentman ML; Marklund SL
    Free Radic Biol Med; 2001 Sep; 31(6):738-44. PubMed ID: 11557311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alteration of lens electrolyte transport parameters following transient oxidative perturbation.
    Delamere NA; Paterson CA; Borchman DB; Hensley SK
    Curr Eye Res; 1988 Oct; 7(10):969-79. PubMed ID: 2852577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of aldehyde dehydrogenase isozymes in the defense of rat lens and human lens epithelial cells against oxidative stress.
    Choudhary S; Xiao T; Vergara LA; Srivastava S; Nees D; Piatigorsky J; Ansari NH
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):259-67. PubMed ID: 15623782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens.
    Saxena P; Saxena AK; Monnier VM
    Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncoupling of attenuated myo-[3H]inositol uptake and dysfunction in Na(+)-K(+)-ATPase pumping activity in hypergalactosemic cultured bovine lens epithelial cells.
    Cammarata PR; Tse D; Yorio T
    Diabetes; 1991 Jun; 40(6):731-7. PubMed ID: 1645682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of a lipophilic cation to monitor electrical membrane potential in the intact rat lens.
    Cheng Q; Lichtstein D; Russell P; Zigler JS
    Invest Ophthalmol Vis Sci; 2000 Feb; 41(2):482-7. PubMed ID: 10670479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.