These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 6691843)

  • 1. Flow separation in the renal arteries.
    Sabbah HN; Hawkins ET; Stein PD
    Arteriosclerosis; 1984; 4(1):28-33. PubMed ID: 6691843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow visualization studies in a mold of the normal human aorta and renal arteries.
    Liepsch D; Poll A; Strigberger J; Sabbah HN; Stein PD
    J Biomech Eng; 1989 Aug; 111(3):222-7. PubMed ID: 2779187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of steady and pulsatile flow in a double branching arterial model.
    Lutz RJ; Hsu L; Menawat A; Zrubek J; Edwards K
    J Biomech; 1983; 16(9):753-66. PubMed ID: 6643546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of celiac and renal artery outflows on near-wall velocities in the porcine iliac arteries.
    Clingan PA; Friedman MH
    Ann Biomed Eng; 2000 Mar; 28(3):302-8. PubMed ID: 10784094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood velocity profiles in the origin of the canine renal artery and their relevance in the localization and development of atherosclerosis.
    Yamamoto T; Tanaka H; Jones CJ; Lever MJ; Parker KH; Kimura A; Hiramatsu O; Ogasawara Y; Tsujioka K; Caro CC
    Arterioscler Thromb; 1992 May; 12(5):626-32. PubMed ID: 1576123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 1998 Nov; 31(11):995-1007. PubMed ID: 9880056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcinematographic studies of flow patterns in the excised rabbit aorta and its major branches.
    Barakat AI; Karino T; Colton CK
    Biorheology; 1997; 34(3):195-221. PubMed ID: 9474263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle image velocimetry study of aorta-renal bifurcation.
    Haga T; Javadzadegan A; Kabir K; Simmons A; Barber T
    Technol Health Care; 2015; 23(5):539-45. PubMed ID: 26410115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doppler blood flow velocity waveforms in the fetal renal arteries: variability at proximal and distal sites in the right and left arteries.
    Haugen G; Godfrey K; Crozier S; Hanson M
    Ultrasound Obstet Gynecol; 2004 Jun; 23(6):590-3. PubMed ID: 15170801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of a common trunk for the inferior phrenic arteries from the right renal artery: a new anatomic vascular variant with clinical implications.
    Topaz O; Topaz A; Polkampally PR; Damiano T; King CA
    Cardiovasc Revasc Med; 2010; 11(1):57-62. PubMed ID: 20129362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady flow visualization in a rigid canine aortic cast.
    Rayman R; Kratky RG; Roach MR
    J Biomech; 1985; 18(12):863-75. PubMed ID: 3908455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location of the ostia of the renal arteries in the aorta.
    Ozan H; Alemdaroglu A; Sinav A; Gümüsalan Y
    Surg Radiol Anat; 1997; 19(4):245-7. PubMed ID: 9381331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D; Chen JY
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood flow measurements in the aorta and major arteries with MR velocity mapping.
    Bogren HG; Buonocore MH
    J Magn Reson Imaging; 1994; 4(2):119-30. PubMed ID: 8180449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Surgery of abdominal aorta with horseshoe kidney].
    Lotina SL; Davidović LB; Kostić DM; Velimirović DV; Petrović PLj; Perisić-Savić MV; KovacevićN S
    Srp Arh Celok Lek; 1997; 125(1-2):36-44. PubMed ID: 17974353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - I. Aortic arch.
    Endo S; Goldsmith HL; Karino T
    Biorheology; 2014; 51(4-5):239-55. PubMed ID: 25281595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow investigations in a model of a three-dimensional human artery with Newtonian and non-Newtonian fluids. Part I.
    Moravec S; Liepsch D
    Biorheology; 1983; 20(6):745-59. PubMed ID: 6661526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of streamline patterns and separated flows in a series of branching vessels with implications for atherosclerosis and thrombosis.
    el-Masry OA; Feuerstein IA; Round GF
    Circ Res; 1978 Oct; 43(4):608-18. PubMed ID: 688561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haemodynamic Variations of Flow to Renal Arteries in Custom-Made and Pivot Branch Fenestrated Endografting.
    Ou J; Tang AYS; Chiu TL; Chow KW; Chan YC; Cheng SWK
    Eur J Vasc Endovasc Surg; 2017 Jan; 53(1):133-139. PubMed ID: 27908677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wall shear stress distribution in a model canine artery during steady flow.
    Lutz RJ; Cannon JN; Bischoff KB; Dedrick RL; Stiles RK; Fry DL
    Circ Res; 1977 Sep; 41(3):391-9. PubMed ID: 890894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.