These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6692976)

  • 1. Appearance of high-molecular-weight acetylcholinesterase in aneural muscle developing in vivo.
    Sohal GS; Wrenn RW
    Dev Biol; 1984 Jan; 101(1):229-34. PubMed ID: 6692976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of postsynaptic-like specializations of the neuromuscular synapse in the absence of motor nerve.
    Sohal GS
    Int J Dev Neurosci; 1988; 6(6):553-65. PubMed ID: 3227992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural control of embryonic acetylcholine receptor and skeletal muscle.
    Creazzo TL; Sohal GS
    Cell Tissue Res; 1983; 228(1):1-12. PubMed ID: 6831518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of innervation on the embryonic development of skeletal muscle.
    Sohal GS; Holt RK
    Cell Tissue Res; 1980; 210(3):383-93. PubMed ID: 7190874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The motor end-plate specific form of acetylcholinesterase: appearance during embryogenesis and re-innervation of rat muscle.
    Vigny M; Koenig J; Rieger F
    J Neurochem; 1976 Dec; 27(6):1347-53. PubMed ID: 1003208
    [No Abstract]   [Full Text] [Related]  

  • 6. Possible mechanisms determining synapse formation in developing skeletal muscles of the chick.
    Gordon T; Perry R; Tuffery AR; Vrbová G G G
    Cell Tissue Res; 1974; 155(1):13-25. PubMed ID: 4141282
    [No Abstract]   [Full Text] [Related]  

  • 7. Two types of focal accumulations of acetylcholinesterase appear in noninnervated regenerating skeletal muscles of the rat.
    Sketelj J; Crne N; Brzin M
    J Neurosci Res; 1988 May; 20(1):90-101. PubMed ID: 3418754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of putative muscle-derived neurotrophic factors by muscle activity and innervation: in vivo and in vitro studies.
    Houenou LJ; McManaman JL; Prevette D; Oppenheim RW
    J Neurosci; 1991 Sep; 11(9):2829-37. PubMed ID: 1880552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disappearance of the 'endplate' form of acetylcholinesterase from a slow tonic muscle.
    Lyles JM; Barnard EA
    FEBS Lett; 1980 Jan; 109(1):9-12. PubMed ID: 7353636
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics.
    Brimijoin S
    Prog Neurobiol; 1983; 21(4):291-322. PubMed ID: 6198691
    [No Abstract]   [Full Text] [Related]  

  • 11. Acetylcholinesterase activity of developing muscles in the lower limb of the rat.
    Umezu Y; Yoshizuka M; Ueda H; Ogata H; Fujimoto S
    Acta Anat (Basel); 1990; 138(4):332-40. PubMed ID: 2220290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of primary and secondary myotubes in aneural muscles in the mouse mutant peroneal muscular atrophy.
    Ashby PR; Wilson SJ; Harris AJ
    Dev Biol; 1993 Apr; 156(2):519-28. PubMed ID: 8462748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle activity pattern regulates postnatal development of acetylcholinesterase molecular forms in normal mice and mice with motor endplate disease.
    Yeakley JM; Janavs JL; Reiness CG
    J Neurosci; 1987 Dec; 7(12):4084-94. PubMed ID: 3694264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular junctions of the posterior cricoarytenoid muscle in the human adult, human fetus and cat. Histochemical and electron microscopic study.
    Yoshihara T; Kanda T; Yaku Y; Kaneko T
    Acta Otolaryngol; 1984; 97(1-2):161-8. PubMed ID: 6689824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular forms of acetylcholinesterase in synaptic and extrasynaptic regions of avian tonic muscle.
    Jedrzejczyk J; Silman I; Lai J; Barnard EA
    Neurosci Lett; 1984 May; 46(3):283-9. PubMed ID: 6738921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle acetylcholinesterase molecular forms in amyotrophic lateral sclerosis.
    Fernandez HL; Stiles JR; Donoso JA
    Muscle Nerve; 1986 Jun; 9(5):399-406. PubMed ID: 3724786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The acetylcholine receptor and the ionic conductance modulation system of skeletal muscle.
    Barnard EA; Dolly JO; Porter CW; Albuquerque EX
    Exp Neurol; 1975 Jul; 48(1):1-28. PubMed ID: 165962
    [No Abstract]   [Full Text] [Related]  

  • 18. A combined myosin ATPase and acetylcholinesterase histochemical method for the demonstration of fibre types and their innervation pattern in skeletal muscle.
    Torrella JR; Fouces V; Palomeque J; Viscor G
    Histochemistry; 1993 May; 99(5):369-72. PubMed ID: 8335483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Junctional form of acetylcholinesterase restored at nerve-free endplates.
    Weinberg CB; Hall ZW
    Dev Biol; 1979 Feb; 68(2):631-5. PubMed ID: 437344
    [No Abstract]   [Full Text] [Related]  

  • 20. Embryonic differentiation of fibre types in normal, paralysed and aneural avian superior oblique muscle.
    Sohal GS; Sickles DW
    J Embryol Exp Morphol; 1986 Jul; 96():79-97. PubMed ID: 2949042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.