These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6693334)

  • 61. Motor-unit discharge rates in maximal voluntary contractions of three human muscles.
    Bellemare F; Woods JJ; Johansson R; Bigland-Ritchie B
    J Neurophysiol; 1983 Dec; 50(6):1380-92. PubMed ID: 6663333
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electromyographic manifestations of muscular fatigue.
    Moritani T; Nagata A; Muro M
    Med Sci Sports Exerc; 1982; 14(3):198-202. PubMed ID: 7109886
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Preceding muscle activity influences motor unit discharge and rate of torque development during ballistic contractions in humans.
    Van Cutsem M; Duchateau J
    J Physiol; 2005 Jan; 562(Pt 2):635-44. PubMed ID: 15539402
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The human force:velocity relationship; activity in the knee flexor and extensor muscles before and after eccentric practice.
    Rutherford OM; Purcell C; Newham DJ
    Eur J Appl Physiol; 2001; 84(1-2):133-40. PubMed ID: 11394243
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Non-invasive characterization of single motor unit electromyographic and mechanomyographic activities in the biceps brachii muscle.
    Cescon C; Sguazzi E; Merletti R; Farina D
    J Electromyogr Kinesiol; 2006 Feb; 16(1):17-24. PubMed ID: 16112874
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles.
    Worrell TW; Karst G; Adamczyk D; Moore R; Stanley C; Steimel B; Steimel S
    J Orthop Sports Phys Ther; 2001 Dec; 31(12):730-40. PubMed ID: 11767248
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nonuniform fatigue characteristics of slow-twitch motor units activated at a fixed percentage of their maximum tetanic tension.
    Cope TC; Webb CB; Yee AK; Botterman BR
    J Neurophysiol; 1991 Nov; 66(5):1483-92. PubMed ID: 1765789
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions.
    Merletti R; Knaflitz M; De Luca CJ
    J Appl Physiol (1985); 1990 Nov; 69(5):1810-20. PubMed ID: 2272975
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Potentiation of maximal voluntary concentric torque in human quadriceps femoris.
    Miyamoto N; Kanehisa H; Kawakami Y
    Med Sci Sports Exerc; 2012 Sep; 44(9):1738-46. PubMed ID: 22460473
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electromechanical delay during knee extensor contractions.
    Vos EJ; Harlaar J; van Ingen Schenau GJ
    Med Sci Sports Exerc; 1991 Oct; 23(10):1187-93. PubMed ID: 1758296
    [TBL] [Abstract][Full Text] [Related]  

  • 71. EMG power spectrum and features of the superimposed M-wave during voluntary eccentric and concentric actions at different activation levels.
    Linnamo V; Strojnik V; Komi PV
    Eur J Appl Physiol; 2002 Apr; 86(6):534-40. PubMed ID: 11944102
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neuromuscular fatigue development during maximal concentric and isometric knee extensions.
    Babault N; Desbrosses K; Fabre MS; Michaut A; Pousson M
    J Appl Physiol (1985); 2006 Mar; 100(3):780-5. PubMed ID: 16282433
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Neuromuscular characteristics of front and back legs in junior fencers.
    Watanabe K; Yoshimura A; Holobar A; Yamashita D; Kunugi S; Hirono T
    Exp Brain Res; 2022 Aug; 240(7-8):2085-2096. PubMed ID: 35771284
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Relationship between work and electromyographic activity during repeated leg muscle contractions in orienteers.
    Gerdle B; Johansson C; Lorentzon R
    Eur J Appl Physiol Occup Physiol; 1988; 58(1-2):8-12. PubMed ID: 3203679
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The bilateral limb deficit (BLD) phenomenon during leg press: a preliminary investigation into central and peripheral factors.
    Whitcomb E; Ortiz O; Toner J; Kuruganti U
    BMC Sports Sci Med Rehabil; 2021 Aug; 13(1):89. PubMed ID: 34389058
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interlimb co-ordination of force and movement-related cortical potentials.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):8-12. PubMed ID: 8891494
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Relevance of hand dominance to the bilateral deficit phenomenon.
    Cornwell A; Khodiguian N; Yoo EJ
    Eur J Appl Physiol; 2012 Dec; 112(12):4163-72. PubMed ID: 22532257
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Leg-extension strength and chair-rise performance in elderly women with Parkinson's disease.
    Pääsuke M; Ereline J; Gapeyeva H; Joost K; Mõttus K; Taba P
    J Aging Phys Act; 2004 Oct; 12(4):511-24. PubMed ID: 15851823
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Insight into motor adaptation to pain from between-leg compensation.
    Hug F; Hodges PW; Salomoni SE; Tucker K
    Eur J Appl Physiol; 2014 May; 114(5):1057-65. PubMed ID: 24514948
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Motor Adaptations to Pain during a Bilateral Plantarflexion Task: Does the Cost of Using the Non-Painful Limb Matter?
    Hug F; Hodges PW; Carroll TJ; De Martino E; Magnard J; Tucker K
    PLoS One; 2016; 11(4):e0154524. PubMed ID: 27115991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.