These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 6693352)
1. Regulation of glucose metabolism in oral streptococci through independent pathways of glucose 6-phosphate and glucose 1-phosphate formation. Keevil CW; Marsh PD; Ellwood DC J Bacteriol; 1984 Feb; 157(2):560-7. PubMed ID: 6693352 [TBL] [Abstract][Full Text] [Related]
2. Inhibition by the antimicrobial agent chlorhexidine of acid production and sugar transport in oral streptococcal bacteria. Marsh PD; Keevil CW; McDermid AS; Williamson MI; Ellwood DC Arch Oral Biol; 1983; 28(3):233-40. PubMed ID: 6574734 [TBL] [Abstract][Full Text] [Related]
3. Evidence that glucose and sucrose uptake in oral streptococcal bacteria involves independent phosphotransferase and proton-motive force-mediated mechanisms. Keevil CW; Williamson MI; Marsh PD; Ellwood DC Arch Oral Biol; 1984; 29(11):871-8. PubMed ID: 6097204 [TBL] [Abstract][Full Text] [Related]
4. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. Guedon E; Desvaux M; Petitdemange H J Bacteriol; 2000 Apr; 182(7):2010-7. PubMed ID: 10715010 [TBL] [Abstract][Full Text] [Related]
5. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius. Thevenot T; Brochu D; Vadeboncoeur C; Hamilton IR J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285 [TBL] [Abstract][Full Text] [Related]
6. Sorbitol transport and metabolism by oral streptococci. Svensäter G Swed Dent J Suppl; 1991; 79():1-103. PubMed ID: 1896926 [TBL] [Abstract][Full Text] [Related]
7. A comparative study of enzymes involved in glucose phosphorylation in oral streptococci. Vadeboncoeur C; Mayrand D; Trahan L J Dent Res; 1982 Jan; 61(1):60-5. PubMed ID: 6948019 [TBL] [Abstract][Full Text] [Related]
8. Regulation of glycolytic rate in Streptococcus sanguis grown under glucose-limited and glucose-excess conditions in a chemostat. Iwami Y; Yamada T Infect Immun; 1985 Nov; 50(2):378-81. PubMed ID: 4055023 [TBL] [Abstract][Full Text] [Related]
9. Environmental regulation of carbohydrate metabolism by Streptococcus sanguis NCTC 7865 grown in a chemostat. Marsh PD; McDermid AS; Keevil CW; Ellwood DC J Gen Microbiol; 1985 Oct; 131(10):2505-14. PubMed ID: 2999295 [TBL] [Abstract][Full Text] [Related]
10. Purification and properties of sorbitol-6-phosphate dehydrogenase from oral streptococci. Svensäter G; Edwardsson S; Kalfas S Oral Microbiol Immunol; 1992 Jun; 7(3):148-54. PubMed ID: 1408350 [TBL] [Abstract][Full Text] [Related]
11. Influence of sodium and potassium ions on acid production by washed cells of Streptococcus mutans ingbritt and Streptococcus sanguis NCTC 7865 grown in a chemostat. Marsh PD; Williamson MI; Keevil CW; McDermid AS; Ellwood DC Infect Immun; 1982 May; 36(2):476-83. PubMed ID: 7085068 [TBL] [Abstract][Full Text] [Related]
12. Purification and properties of pyruvate kinase from Streptococcus sanguis and activator specificity of pyruvate kinase from oral streptococci. Abbe K; Takahashi S; Yamada T Infect Immun; 1983 Mar; 39(3):1007-14. PubMed ID: 6840832 [TBL] [Abstract][Full Text] [Related]
13. Heterofermentative glucose metabolism by glucose transport-impaired mutants of oral streptococcal bacteria during growth in batch culture. Vadeboncoeur C; Trahan L Arch Oral Biol; 1983; 28(10):931-7. PubMed ID: 6580849 [TBL] [Abstract][Full Text] [Related]
14. Glycerol metabolism contributes to competition by oral streptococci through production of hydrogen peroxide. Taylor ZA; Chen P; Noeparvar P; Pham DN; Walker AR; Kitten T; Zeng L J Bacteriol; 2024 Sep; 206(9):e0022724. PubMed ID: 39171915 [TBL] [Abstract][Full Text] [Related]
15. Effects of fluoride on carbohydrate metabolism by washed cells of Streptococcus mutans grown at various pH values in a chemostat. Hamilton IR; Ellwood DC Infect Immun; 1978 Feb; 19(2):434-42. PubMed ID: 24590 [TBL] [Abstract][Full Text] [Related]
16. Differential toxic effects of lactate and acetate on the metabolism of Streptococcus mutans and Streptococcus sanguis. Carlsson J; Hamilton IR Oral Microbiol Immunol; 1996 Dec; 11(6):412-9. PubMed ID: 9467375 [TBL] [Abstract][Full Text] [Related]
17. Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin. Bender GR; Thibodeau EA; Marquis RE J Dent Res; 1985 Feb; 64(2):90-5. PubMed ID: 2579114 [TBL] [Abstract][Full Text] [Related]
18. Vesicles prepared from Streptococcus mutans demonstrate the presence of a second glucose transport system. Buckley ND; Hamilton IR Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2639-48. PubMed ID: 8000534 [TBL] [Abstract][Full Text] [Related]
19. Sorbitol inhibition of glucose metabolism by Streptococcus sanguis 160. Hamilton IR; Svensater G Oral Microbiol Immunol; 1991 Jun; 6(3):151-9. PubMed ID: 1945498 [TBL] [Abstract][Full Text] [Related]
20. Utilization of sialic acid by viridans streptococci. Byers HL; Homer KA; Beighton D J Dent Res; 1996 Aug; 75(8):1564-71. PubMed ID: 8906124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]