These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6694073)

  • 1. Precursor-metabolite interaction in the metabolism of lidocaine.
    Suzuki T; Fujita S; Kawai R
    J Pharm Sci; 1984 Jan; 73(1):136-8. PubMed ID: 6694073
    [No Abstract]   [Full Text] [Related]  

  • 2. Selective 3-hydroxylation deficiency of lidocaine and its metabolite in Dark Agouti rats.
    Masubuchi Y; Umeda S; Chiba M; Fujita S; Suzuki T
    Biochem Pharmacol; 1991 Jul; 42(3):693-5. PubMed ID: 1859470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of lidocaine in human liver in vitro.
    Hermansson J; Glaumann H; Karlén B; von Bahr C
    Acta Pharmacol Toxicol (Copenh); 1980 Jul; 47(1):49-52. PubMed ID: 7395524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic activation of lidocaine and covalent binding to rat liver microsomal protein.
    Masubuchi Y; Araki J; Narimatsu S; Suzuki T
    Biochem Pharmacol; 1992 Jun; 43(12):2551-7. PubMed ID: 1632813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of vesicle lipid composition on the metabolism of lignocaine by a male-specific isozyme of cytochrome P-450 from rat liver.
    Meftah NM; Skett P
    Biochem Pharmacol; 1987 Nov; 36(21):3771-2. PubMed ID: 3675630
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolism of lidocaine by purified rat liver microsomal cytochrome P-450 isozymes.
    Oda Y; Imaoka S; Nakahira Y; Asada A; Fujimori M; Fujita S; Funae Y
    Biochem Pharmacol; 1989 Dec; 38(24):4439-44. PubMed ID: 2604746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous quantitation of lidocaine and its four metabolites by high-performance liquid chromatography: application to studies on in vitro and in vivo metabolism of lidocaine in rats.
    Kawai R; Fujita S; Suzuki T
    J Pharm Sci; 1985 Nov; 74(11):1219-24. PubMed ID: 4087184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Position selective sex difference in imipramine metabolism in rat liver microsomes.
    Chiba M; Nishihara E; Fujita S; Suzuki T
    Biochem Pharmacol; 1985 Mar; 34(6):898-900. PubMed ID: 3977962
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction of ranitidine with liver microsomes.
    Rendić S; Alebić-Kolbah T; Kajfez F; Ruf HH
    Xenobiotica; 1982 Jan; 12(1):9-17. PubMed ID: 6124064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans.
    Wang JS; Backman JT; Taavitsainen P; Neuvonen PJ; Kivistö KT
    Drug Metab Dispos; 2000 Aug; 28(8):959-65. PubMed ID: 10901707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes.
    Yao HT; Wu YS; Chang YW; Hsieh HP; Chen WC; Lan SJ; Chen CT; Chao YS; Chang L; Sun HY; Yeh TK
    Drug Metab Dispos; 2007 Jul; 35(7):1042-9. PubMed ID: 17403915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for two catalytically different binding sites of liver microsomal cytochrome P-450: importance for species and sex differences in oxidation pattern of lidocaine.
    von Bahr C; Hedlund I; Karlén B; Bäckström D; Grasdalen H
    Acta Pharmacol Toxicol (Copenh); 1977 Jul; 41(1):39-48. PubMed ID: 578378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lidocaine metabolism in human liver microsomes by cytochrome P450IIIA4.
    Bargetzi MJ; Aoyama T; Gonzalez FJ; Meyer UA
    Clin Pharmacol Ther; 1989 Nov; 46(5):521-7. PubMed ID: 2582709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-induction by oleandomycin of its own transformation into a metabolite forming an inactive complex with reduced cytochrome P-450. Comparison with troleandomycin.
    Pessayre D; Descatoire V; Tinel M; Larrey D
    J Pharmacol Exp Ther; 1982 Apr; 221(1):215-21. PubMed ID: 6977641
    [No Abstract]   [Full Text] [Related]  

  • 15. [Dealkylation of ethylmorphine and p-C-hydroxylation of aniline in liver microsomes of humans and male and female rats].
    Ackermann E
    Biochem Pharmacol; 1972 Aug; 21(16):2169-80. PubMed ID: 4646189
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolism of lidocaine by liver microsomes from streptozotocin-diabetic rats.
    Gawrońska-Szklarz B; Musial D; Droździk M; Paprota B
    Pol J Pharmacol; 2003; 55(2):251-4. PubMed ID: 12926555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydroxylation and dealkylation of some naphthyl alkyl ethers by rat liver microsomes.
    Hunter WH; Wilson P
    Xenobiotica; 1981 Mar; 11(3):179-88. PubMed ID: 7293214
    [No Abstract]   [Full Text] [Related]  

  • 18. N-hydroxylation and N-dealkylation by P4502C3 of N-methylbenzamidine: N-oxygenation and N-oxidative dealkylation of one functional group.
    Clement B; Jung F
    Xenobiotica; 1995 May; 25(5):443-55. PubMed ID: 7571718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of cytochrome P-450 isozymes involved in the hydroxylation of dantrolene by rat liver microsomes.
    Jayyosi Z; Villoutreix J; Ziegler JM; Batt AM; De Maack F; Siest G; Thomas PE
    Drug Metab Dispos; 1993; 21(5):939-45. PubMed ID: 7902259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450IIIA enzymes in rat liver microsomes: involvement in C3-hydroxylation of diazepam and nordazepam but not N-dealkylation of diazepam and temazepam.
    Reilly PE; Thompson DA; Mason SR; Hooper WD
    Mol Pharmacol; 1990 May; 37(5):767-74. PubMed ID: 1971091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.