These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6694368)

  • 1. Numerical simulations of steady flow inside a three dimensional aortic bifurcation model.
    Wille SO
    J Biomed Eng; 1984 Jan; 6(1):49-55. PubMed ID: 6694368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of steady flow in a two-dimensional arterial model.
    Agonafer D; Watkins CB; Cannon JN
    J Biomech; 1985; 18(9):695-701. PubMed ID: 4077866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional steady flow through a bifurcation.
    Yung CN; De Witt KJ; Keith TG
    J Biomech Eng; 1990 May; 112(2):189-97. PubMed ID: 2345450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the hydrodynamical behaviour of three heart aortic prostheses by numerical methods.
    Cerrolaza M; Herrera M; Berrios R; Annichiaricco W
    J Med Eng Technol; 1996; 20(6):219-28. PubMed ID: 9029394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure drop and flow rate measurements in a human aortic bifurcation cast for steady and pulsatile flow.
    Klanchar M; Tarbell JM
    J Biomech; 1989; 22(5):491-500. PubMed ID: 2777824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsteady and three-dimensional simulation of blood flow in the human aortic arch.
    Shahcheraghi N; Dwyer HA; Cheer AY; Barakat AI; Rutaganira T
    J Biomech Eng; 2002 Aug; 124(4):378-87. PubMed ID: 12188204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles.
    Perktold K; Peter RO; Resch M; Langs G
    J Biomed Eng; 1991 Nov; 13(6):507-15. PubMed ID: 1770813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis of 3D blood flow and common carotid artery hemodynamics in the carotid artery bifurcation with stenosis.
    Antonova N; Dong X; Tosheva P; Kaliviotis E; Velcheva I
    Clin Hemorheol Microcirc; 2014; 57(2):159-73. PubMed ID: 24584325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of steady flow in a model of the aortic bifurcation.
    Thiriet M; Pares C; Saltel E; Hecht F
    J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The flow field along the entire length of mouse aorta and primary branches.
    Huo Y; Guo X; Kassab GS
    Ann Biomed Eng; 2008 May; 36(5):685-99. PubMed ID: 18299987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-layer model for buckling of a human aortic segment under specific flow-pressure conditions.
    Amabili M; Karazis K; Mongrain R; Païdoussis MP; Cartier R
    Int J Numer Method Biomed Eng; 2012 May; 28(5):495-512. PubMed ID: 25099454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation.
    Perktold K; Resch M; Peter RO
    J Biomech; 1991; 24(6):409-20. PubMed ID: 1856241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of branchings on blood flow in the system of human coronary arteries.
    Wiwatanapataphee B; Wu YH; Siriapisith T; Nuntadilok B
    Math Biosci Eng; 2012 Jan; 9(1):199-214. PubMed ID: 22229404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement and calculations of laminar flow in a ninety degree bifurcation.
    Liepsch D; Moravec S; Rastogi AK; Vlachos NS
    J Biomech; 1982; 15(7):473-85. PubMed ID: 6215408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 2000 Jun; 33(6):717-28. PubMed ID: 10807993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation of blood flow patterns in arteries of various geometries.
    Wong PK; Johnston KW; Ethier CR; Cobbold RS
    J Vasc Surg; 1991 Nov; 14(5):658-67. PubMed ID: 1942375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 1998 Nov; 31(11):995-1007. PubMed ID: 9880056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.