BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 6696087)

  • 1. Arterial and microvascular contributions to cerebral cortical autoregulation in rats.
    Harper SL; Bohlen HG; Rubin MJ
    Am J Physiol; 1984 Jan; 246(1 Pt 2):H17-24. PubMed ID: 6696087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of cerebral arteries and arterioles to acute hypotension and hypertension.
    Kontos HA; Wei EP; Navari RM; Levasseur JE; Rosenblum WI; Patterson JL
    Am J Physiol; 1978 Apr; 234(4):H371-83. PubMed ID: 645875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site of autoregulatory reactions in the vascular bed of cat skeletal muscle as determined with a new technique for segmental vascular resistance recordings.
    Björnberg J; Grände PO; Maspers M; Mellander S
    Acta Physiol Scand; 1988 Jun; 133(2):199-210. PubMed ID: 3227915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional, segmental, and temporal heterogeneity of cerebral vascular autoregulation.
    Baumbach GL; Heistad DD
    Ann Biomed Eng; 1985; 13(3-4):303-10. PubMed ID: 3898928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Organization of the process of autoregulation of cerebral blood flow].
    Mitagvariia NP; Meladze VG; Begiashvili VT
    Fiziol Zh SSSR Im I M Sechenova; 1984 Jun; 70(6):822-8. PubMed ID: 6479365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Responses of cerebral arteries to the changes in cerebral perfusion pressure].
    Yamaguchi S; Kobayashi S; Yamashiata K; Murata A; Kitani M
    No To Shinkei; 1989 Aug; 41(8):807-11. PubMed ID: 2803837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral autoregulation in young spontaneously hypertensive rats. Effect of sympathetic denervation.
    Sadoshima S; Fujishima M; Yoshida F; Ibayashi S; Shiokawa O; Omae T
    Hypertension; 1985; 7(3 Pt 1):392-7. PubMed ID: 3997222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of resting and passive intestinal vascular pressures in rat and rabbit.
    Bohlen HG
    Am J Physiol; 1987 Nov; 253(5 Pt 1):G587-95. PubMed ID: 3688226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical considerations for modeling cerebral blood flow autoregulation to systemic arterial pressure.
    Gao E; Young WL; Pile-Spellman J; Ornstein E; Ma Q
    Am J Physiol; 1998 Mar; 274(3):H1023-31. PubMed ID: 9530217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial pressure effects on preglomerular microvasculature of juxtamedullary nephrons.
    Carmines PK; Inscho EW; Gensure RC
    Am J Physiol; 1990 Jan; 258(1 Pt 2):F94-102. PubMed ID: 2301599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of arginine vasopressin on cerebral microvascular pressure.
    Faraci FM; Mayhan WG; Schmid PG; Heistad DD
    Am J Physiol; 1988 Jul; 255(1 Pt 2):H70-6. PubMed ID: 3394828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal cortical and medullary microvascular blood flow autoregulation in rat.
    Harrison-Bernard LM; Navar LG
    Kidney Int Suppl; 1996 Dec; 57():S23-9. PubMed ID: 8941918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Pa CO2 on blood flow and microvasculature of ischemic and nonischemic cerebral cortex.
    Waltz AG
    Stroke; 1970; 1(1):27-37. PubMed ID: 5522898
    [No Abstract]   [Full Text] [Related]  

  • 14. Cerebral autoregulation during moderate hypothermia in rats.
    Verhaegen MJ; Todd MM; Hindman BJ; Warner DS
    Stroke; 1993 Mar; 24(3):407-14. PubMed ID: 8446978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microvascular distribution of coronary vascular resistance in beating left ventricle.
    Chilian WM; Eastham CL; Marcus ML
    Am J Physiol; 1986 Oct; 251(4 Pt 2):H779-88. PubMed ID: 3766755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of myogenic vascular control in the rat cerebral cortex.
    Bohlen HG; Harper SL
    Circ Res; 1984 Oct; 55(4):554-9. PubMed ID: 6478557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dilation of perforating arteries in rat brain in response to systemic hypotension is more sensitive and pronounced than that of pial arterioles: simultaneous visualization of perforating and cortical vessels by in-vivo microangiography.
    Yoshino H; Sakurai T; Oizumi XS; Akisaki T; Wang X; Yokono K; Kondoh T; Kohmura E; Umentani K
    Microvasc Res; 2009 Mar; 77(2):230-3. PubMed ID: 18992262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microvascular pressure profile of serosal vessels of rat trachea.
    Ballard ST; Nations RH; Taylor AE
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1303-4. PubMed ID: 1306639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure distribution in the pial arterial system of rats based on morphometric data and mathematical models.
    Hudetz AG; Conger KA; Halsey JH; Pal M; Dohan O; Kovach AG
    J Cereb Blood Flow Metab; 1987 Jun; 7(3):342-55. PubMed ID: 3584267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effective model of cerebrovascular pressure reactivity and blood flow autoregulation.
    Acosta S; Penny DJ; Brady KM; Rusin CG
    Microvasc Res; 2018 Jan; 115():34-43. PubMed ID: 28847705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.