These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 6696345)

  • 1. Peripheral vascular disease.
    Bylund-Fellenius AC; Walker PM; Elander A; Scherstén T
    Am Rev Respir Dis; 1984 Feb; 129(2 Pt 2):S65-7. PubMed ID: 6696345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic response in different muscle types to reduced blood flow during exercise in perfused rat hindlimb.
    Walker PM; Idström JP; Schersten T; Bylund-Fellenius AC
    Clin Sci (Lond); 1982 Sep; 63(3):293-9. PubMed ID: 7094539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle respiration during exercise.
    Bylund-Fellenius AC; Idström JP; Holm S
    Am Rev Respir Dis; 1984 Feb; 129(2 Pt 2):S10-2. PubMed ID: 6696335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of physical training on rat calf muscle, oxygen tension, blood flow, metabolism and function in an animal model of chronic occlusive peripheral vascular disease.
    Nicholson CD; Angersbach D; Wilke R
    Int J Sports Med; 1992 Jan; 13(1):60-4. PubMed ID: 1544736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary supply and muscle fibre types in patients with intermittent claudication: relationships between morphology and metabolism.
    Hammarsten J; Bylund-Fellenius AC; Holm J; Scherstén T; Krotkiewski M
    Eur J Clin Invest; 1980 Aug; 10(4):301-5. PubMed ID: 6775957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II; Shepard AD; Anagnostopoulos PV; Katsamouris A; Boska MD
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle blood flow during locomotory exercise.
    Laughlin MH; Armstrong RB
    Exerc Sport Sci Rev; 1985; 13():95-136. PubMed ID: 3891377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of training following bilateral stenosis of the femoral artery in rats.
    Mathien GM; Terjung RL
    Am J Physiol; 1986 Jun; 250(6 Pt 2):H1050-9. PubMed ID: 3717359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skin and muscle flow during exercise in intermittent claudication.
    Koppelmann J
    Scand J Clin Lab Invest Suppl; 1973; 128():93-6. PubMed ID: 4764606
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolic adaptation to reduced muscle blood flow. I. Enzyme and metabolite alterations.
    Elander A; Idström JP; Scherstén T; Bylund-Fellenius AC
    Am J Physiol; 1985 Jul; 249(1 Pt 1):E63-9. PubMed ID: 2990234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramuscular pressure, blood flow, and skeletal muscle metabolism in patients with venous claudication.
    Qvarfordt P; Eklöf B; Ohlin P; Plate G; Saltin B
    Surgery; 1984 Feb; 95(2):191-5. PubMed ID: 6695337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle metabolism during exercise in patients with occlusive arterial disease: effect of reconstructive surgery.
    Pernow B; Saltin B; Wahren J; Cronestrand R
    Scand J Clin Lab Invest Suppl; 1973; 128():21-5. PubMed ID: 4764586
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of hindlimb unweighting on tissue blood flow in the rat.
    McDonald KS; Delp MD; Fitts RH
    J Appl Physiol (1985); 1992 Jun; 72(6):2210-8. PubMed ID: 1629075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calf muscle oxygen saturation and the effects of supervised exercise training for intermittent claudication.
    Beckitt TA; Day J; Morgan M; Lamont PM
    J Vasc Surg; 2012 Aug; 56(2):470-5. PubMed ID: 22503174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate and pyruvate changes in the leg during and after exercise in normal subjects and in patients with femoral artery occlusion.
    Hlavová A; Linhart J; Prerovský I; Ganz V
    Clin Sci; 1968 Jun; 34(3):397-409. PubMed ID: 5666870
    [No Abstract]   [Full Text] [Related]  

  • 16. The influence of weighted exercise on tissue (intramuscular) pressure in normal subjects and patients with intermittent claudication.
    Reneman RS; Jageneau AH
    Scand J Clin Lab Invest Suppl; 1973; 128():37-42. PubMed ID: 4764594
    [No Abstract]   [Full Text] [Related]  

  • 17. Skeletal muscle blood flow abnormalities in rats with a chronic myocardial infarction: rest and exercise.
    Musch TI; Terrell JA
    Am J Physiol; 1992 Feb; 262(2 Pt 2):H411-9. PubMed ID: 1539701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical activity and peripheral atherosclerosis.
    Myhre K; Sørlie DG
    Scand J Soc Med Suppl; 1982; 29():195-201. PubMed ID: 6958042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic activity of skeletal muscle in patients with peripheral arterial insufficiency.
    Dahllöf AG; Björntorp P; Holm J; Scherstén T
    Eur J Clin Invest; 1974 Feb; 4(1):9-15. PubMed ID: 4819838
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of acute exercise on the content of free sphinganine and sphingosine in different skeletal muscle types of the rat.
    Dobrzyń A; Górski J
    Horm Metab Res; 2002 Sep; 34(9):523-9. PubMed ID: 12384830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.