These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6696398)

  • 1. [Spectrophotometric analysis of amphotericin B in technological objects].
    Bershteĭn IIa; Vlasenko AIu; Bershteĭn EM; Vekshin GA
    Antibiotiki; 1984 Jan; 29(1):19-24. PubMed ID: 6696398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Optimization of conditions for determining the activity of amphotericin B].
    Bershteĭn EM
    Antibiotiki; 1977 Jan; 22(1):13-6. PubMed ID: 14589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Differential spectrophotometric method of analysing levorin in the culture broth and in the mycelium].
    Bob TG; Barabanshchikova GV; Raĭgorodskaia VIa; Etingov ED; Fradkova TA
    Antibiotiki; 1978 Oct; 23(10):882-5. PubMed ID: 81654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Method of the spectrophotometric analysis of polyene antibiotics].
    Lupashevskaia DP; Bershteĭn IIa; Raĭgorodskaia VIa; Birman GSh
    Antibiotiki; 1977 Jan; 22(1):33-6. PubMed ID: 843070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between CLSI, EUCAST and Etest methodologies for amphotericin B and fluconazole antifungal susceptibility testing of Candida spp. clinical isolates.
    Claudino AL; Peixoto RF; Melhem MS; Szeszs MW; Lyon JP; Chavasco JK; Franco MC
    Pharmazie; 2008 Apr; 63(4):286-9. PubMed ID: 18468388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of resistance to amphotericin B in Candida isolates by using Iso-Sensitest broth.
    Cuenca-Estrella M; Díaz-Guerra TM; Mellado E; Rodríguez-Tudela JL
    Antimicrob Agents Chemother; 2001 Jul; 45(7):2070-4. PubMed ID: 11408225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particulate matter in reconstituted amphotericin B and assay of filtered solutions of amphotericin B.
    Piecoro JJ; Goodman NL; Wheeler WE; Gwilt PR; Rapp RP
    Am J Hosp Pharm; 1975 Apr; 32(4):381-4. PubMed ID: 1093398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standardization of antifungal susceptibility variables for a semiautomated methodology.
    Rodríguez-Tudela JL; Cuenca-Estrella M; Díaz-Guerra TM; Mellado E
    J Clin Microbiol; 2001 Jul; 39(7):2513-7. PubMed ID: 11427562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Determination of p-aminoacetophenone and changes in its levels in a levorin producer depending on culture conditions].
    Aleksintseva OA; Malyshkina MA; Namestnikova VP; Tsyganov VA
    Antibiotiki; 1981 Aug; 26(8):566-70. PubMed ID: 7197502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Extraction and spectrophotometric method for the quantitative determination of oleandomycin].
    Slavin AA; Etingov ED; Prokopovich AV; Brushtein IZ; Bashkovich AP
    Antibiotiki; 1981 Apr; 26(4):253-6. PubMed ID: 7235664
    [No Abstract]   [Full Text] [Related]  

  • 11. [Natural variability of the producer of amphotericin Act. nodosus Trejo in relation to antibiotic production].
    Zhukova RA; Tsyganov VA; Malyshkina MA
    Antibiotiki; 1968 Apr; 13(4):297-302. PubMed ID: 4970744
    [No Abstract]   [Full Text] [Related]  

  • 12. Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey.
    Patton T; Barrett J; Brennan J; Moran N
    J Microbiol Methods; 2006 Jan; 64(1):84-95. PubMed ID: 15979745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of fungicidal activities of voriconazole and amphotericin B against hyphae of Aspergillus fumigatus.
    Krishnan S; Manavathu EK; Chandrasekar PH
    J Antimicrob Chemother; 2005 Jun; 55(6):914-20. PubMed ID: 15824093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of spectrophotometric reading for in vitro antifungal susceptibility testing of Aspergillus spp.
    Dannaoui E; Persat F; Monier MF; Borel E; Piens MA; Picot S
    Can J Microbiol; 1999 Oct; 45(10):871-4. PubMed ID: 10907424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques.
    Carmody M; Byrne B; Murphy B; Breen C; Lynch S; Flood E; Finnan S; Caffrey P
    Gene; 2004 Dec; 343(1):107-15. PubMed ID: 15563836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the etest method using Mueller-Hinton agar with glucose and methylene blue for determining amphotericin B MICs for 4,936 clinical isolates of Candida species.
    Pfaller MA; Boyken L; Messer SA; Tendolkar S; Hollis RJ; Diekema DJ
    J Clin Microbiol; 2004 Nov; 42(11):4977-9. PubMed ID: 15528683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Determination of in vitro susceptibility of Candida species to amphotericin B by E-test and previously proposed MIC breakpoints on two different media].
    Alp S; Sancak B; Arikan S
    Mikrobiyol Bul; 2008 Apr; 42(2):293-300. PubMed ID: 18697427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characteristics of the electrophysical parameters of the growing mycelium of Act. nodosus, a producer of amphotericin B].
    Sargaev PM; Vekshin GA; Sedykh NV
    Antibiotiki; 1981 May; 26(5):349-52. PubMed ID: 7259139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Morphology of sporophores and spores in spontaneous mutants of Actinomyces nodosus Trejo producer of amphotericin].
    Zhukova RA; Zhuravleva NP; Morozov VM
    Antibiotiki; 1970 Sep; 15(9):785-9. PubMed ID: 5489725
    [No Abstract]   [Full Text] [Related]  

  • 20. Amphotericin B susceptibility of Candida species assessed by rapid flow cytometric membrane potential assay.
    Ordóñez JV; Wehman NM
    Cytometry; 1995 Jun; 22(2):154-7. PubMed ID: 7587748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.