These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6696414)

  • 1. Microbial uptake of radiolabeled substrates: estimates of growth rates from time course measurements.
    Li WK
    Appl Environ Microbiol; 1984 Jan; 47(1):184-92. PubMed ID: 6696414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of bacterial production in fresh waters by the simultaneous measurement of [35S]sulphate and d-[3H]glucose uptake in the dark.
    Campbell PG; Baker JH
    Can J Microbiol; 1978 Aug; 24(8):939-46. PubMed ID: 688101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterotrophic activities of bacterioneuston and bacterioplankton.
    Dietz AS; Albright LJ; Tuominen T
    Can J Microbiol; 1976 Dec; 22(12):1699-709. PubMed ID: 1009500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on metabolic activity of planktonic bacteria isolated from three lakes.
    Strzelczyk E; Stopiński M; Donderski W
    Acta Microbiol Pol B; 1975; 7(3):177-83. PubMed ID: 1189994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics and estimates of growth and loss rates of bacterioplankton in a temperate freshwater system.
    Jugnia LB; Sime-Ngando T; Gilbert D
    FEMS Microbiol Ecol; 2006 Oct; 58(1):23-32. PubMed ID: 16958905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria.
    Roslev P; Larsen MB; Jørgensen D; Hesselsoe M
    J Microbiol Methods; 2004 Dec; 59(3):381-93. PubMed ID: 15488281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ecological significance of sinking to planktonic bacteria.
    Jassby AD
    Can J Microbiol; 1975 Mar; 21(3):270-4. PubMed ID: 1090348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative model and approach for determining microbial heterotrophic activities in aquatic systems.
    Dietz AS; Albright LJ; Tuominen T
    Appl Environ Microbiol; 1977 Apr; 33(4):817-23. PubMed ID: 326186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir.
    Simek K; Hornák K; Jezbera J; Nedoma J; Vrba J; Straskrábová V; Macek M; Dolan JR; Hahn MW
    Environ Microbiol; 2006 Sep; 8(9):1613-24. PubMed ID: 16913921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometry assessment of bacterioplankton in tropical marine environments.
    Andrade L; Gonzalez AM; Araujo FV; Paranhos R
    J Microbiol Methods; 2003 Dec; 55(3):841-50. PubMed ID: 14607430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimates of bacterial growth from changes in uptake rates and biomass.
    Kirchman D; Ducklow H; Mitchell R
    Appl Environ Microbiol; 1982 Dec; 44(6):1296-307. PubMed ID: 6760812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal cell size for resource uptake in fluids: a new facet of resource competition.
    Yoshiyama K; Klausmeier CA
    Am Nat; 2008 Jan; 171(1):59-70. PubMed ID: 18171151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition.
    Christensen GA; Moon J; Veach AM; Mosher JJ; Wymore AM; van Nostrand JD; Zhou J; Hazen TC; Arkin AP; Elias DA
    PLoS One; 2018; 13(3):e0194663. PubMed ID: 29558522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterotrophic potential for amino acid uptake in a naturally eutrophic lake.
    Burnison BK; Morita RY
    Appl Microbiol; 1974 Mar; 27(3):488-95. PubMed ID: 4207581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Heterotrophic organisms and viruses in the Oka River and Cheboksary Reservoir during the abnormally hot summer of 2010].
    Kopylov AI; Stroĭnov IaV; Zabotkina EA; Romanenko AV; Maslennikova TS
    Izv Akad Nauk Ser Biol; 2013; (3):377-82. PubMed ID: 24171319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism--mathematical models and experimental observations.
    Sarkar RR; Chattopadhayay J
    J Theor Biol; 2003 Oct; 224(4):501-16. PubMed ID: 12957123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine planktonic archaea take up amino acids.
    Ouverney CC; Fuhrman JA
    Appl Environ Microbiol; 2000 Nov; 66(11):4829-33. PubMed ID: 11055931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive inhibition for amino acid uptake by the indigenous microflora of Upper Klamath Lake.
    Burnison BK; Morita RY
    Appl Microbiol; 1973 Jan; 25(1):103-6. PubMed ID: 4687063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic inhibition of size-fractionated marine plankton radiolabeled with amino acids, glucose, bicarbonate, and phosphate in the light and dark.
    Li WK; Dickie PM
    Microb Ecol; 1985 Mar; 11(1):11-24. PubMed ID: 24221236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Food-Web Drivers in Tropical Reservoirs.
    Domingues CD; da Silva LH; Rangel LM; de Magalhães L; de Melo Rocha A; Lobão LM; Paiva R; Roland F; Sarmento H
    Microb Ecol; 2017 Apr; 73(3):505-520. PubMed ID: 27900461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.