These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6696452)

  • 21. Kinetics of carboxylation of endogenous and exogenous substrates by the vitamin K-dependent carboxylase.
    Kappel WK; Olson RE
    Arch Biochem Biophys; 1984 Apr; 230(1):294-9. PubMed ID: 6712238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of N-methyl-thiotetrazole on rat liver microsomal vitamin K-dependent carboxylation.
    Suttie JW; Engelke JA; McTigue J
    Biochem Pharmacol; 1986 Jul; 35(14):2429-33. PubMed ID: 3729995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vitamin K-dependent carboxylase: affinity purification from bovine liver by using a synthetic propeptide containing the gamma-carboxylation recognition site.
    Hubbard BR; Ulrich MM; Jacobs M; Vermeer C; Walsh C; Furie B; Furie BC
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6893-7. PubMed ID: 2780546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of fluoro- and hydroxy-derivatives of vitamin K as substrates or inhibitors of the liver microsomal vitamin K-dependent carboxylase.
    Grossman CP; Suttie JW
    Biofactors; 1992 Jan; 3(3):205-9. PubMed ID: 1599614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies of the vitamin K-dependent carboxylase and vitamin K epoxide reductase in rat liver.
    Suttie JW; Preusch PC
    Haemostasis; 1986; 16(3-4):193-215. PubMed ID: 3530899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural prenylquinones inhibit the enzymes of the vitamin K cycle in vitro.
    Ronden JE; Soute BA; Thijssen HH; Saupe J; Vermeer C
    Biochim Biophys Acta; 1996 Nov; 1298(1):87-94. PubMed ID: 8948492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vitamin K-dependent carboxylase: synthesis of an inhibitor of the glutamyl binding site.
    Rich DH; Kawai M; Goodman HL; Engelke J; Suttie JW
    FEBS Lett; 1983 Feb; 152(1):79-82. PubMed ID: 6840280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vitamin K and energy transduction: a base strength amplification mechanism.
    Dowd P; Hershline R; Ham SW; Naganathan S
    Science; 1995 Sep; 269(5231):1684-91. PubMed ID: 7569894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Propeptide recognition by the vitamin K-dependent carboxylase in early processing of prothrombin and factor X.
    Wallin R; Turner R
    Biochem J; 1990 Dec; 272(2):473-8. PubMed ID: 2268273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of an acetone powder preparation of the vitamin K-dependent gamma-glutamyl carboxylase.
    Friedman PA; Shia MA
    Biochim Biophys Acta; 1980 Dec; 616(2):362-70. PubMed ID: 7213643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutamyl substrate-induced exposure of a free cysteine residue in the vitamin K-dependent gamma-glutamyl carboxylase is critical for vitamin K epoxidation.
    Bouchard BA; Furie B; Furie BC
    Biochemistry; 1999 Jul; 38(29):9517-23. PubMed ID: 10413529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vitamin K hydroperoxide: an intermediate in gamma-glutamate carboxylation?
    Nutr Rev; 1984 Aug; 42(8):290-2. PubMed ID: 6384837
    [No Abstract]   [Full Text] [Related]  

  • 33. 3-Methylcholanthrene induction of enzymes in the vitamin K-dependent carboxylation system.
    Wallin R; Patrick SD; Martin LF
    Biochem Pharmacol; 1987 Dec; 36(24):4303-6. PubMed ID: 3120735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of reduced vitamin K esters on vitamin K-dependent carboxylation.
    Chander KS; Gaudry M; Marquet A; Rikong-Adie H; Decottignies-Lemarechal P; Azerad R
    Biochim Biophys Acta; 1981 Mar; 673(2):157-62. PubMed ID: 7213818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and mechanism of action of the vitamin K-dependent gamma-glutamyl carboxylase: recent advances from mutagenesis studies.
    Furie BC; Furie B
    Thromb Haemost; 1997 Jul; 78(1):595-8. PubMed ID: 9198222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vitamin K-dependent carboxylase. Possible role for thioredoxin in the reduction of vitamin K metabolites in liver.
    Johan L; van Haarlem M; Soute BA; Vermeer C
    FEBS Lett; 1987 Oct; 222(2):353-7. PubMed ID: 3308517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The biochemical basis of warfarin therapy.
    Suttie JW
    Adv Exp Med Biol; 1987; 214():3-16. PubMed ID: 3310547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitamin K-dependent carboxylase: effect of detergent concentrations, vitamin K status, and added protein precursors on activity.
    Shah DV; Swanson JC; Suttie JW
    Arch Biochem Biophys; 1983 Apr; 222(1):216-21. PubMed ID: 6838220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vitamin K1 reduction in human liver. Location of the coumarin-drug-insensitive enzyme.
    Wallin R; Patrick SD; Martin LF
    Biochem J; 1989 Jun; 260(3):879-84. PubMed ID: 2764909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vitamin K-dependent carboxylase: effect of ammonium sulfate on substrate carboxylation and on inhibition by stereospecific substrate analogs.
    Soute BA; Acher F; Azerad R; Vermeer C
    Biochim Biophys Acta; 1990 Apr; 1034(1):11-6. PubMed ID: 2328256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.