These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6696893)

  • 1. The relationship between substrate dissociation constants derived from transport experiments and from equilibrium binding assays. Implications of the conventional carrier model.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1984 Jan; 769(2):455-60. PubMed ID: 6696893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The choline transport system of erythrocytes distribution of the free carrier in the membrane.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 Jul; 600(1):228-32. PubMed ID: 7397171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of transport systems dependent on periplasmic binding proteins.
    Krupka RM
    Biochim Biophys Acta; 1992 Sep; 1110(1):1-10. PubMed ID: 1390828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1979 Nov; 557(2):469-85. PubMed ID: 497194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presteady-state kinetics and carrier-mediated transport: a theoretical analysis.
    Wierzbicki W; Berteloot A; Roy G
    J Membr Biol; 1990 Jul; 117(1):11-27. PubMed ID: 2402006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing models for transport systems dependent on periplasmic binding proteins.
    Krupka RM
    Biochim Biophys Acta; 1992 Sep; 1110(1):11-9. PubMed ID: 1390830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of substrate binding forces in exchange-only transport systems: I. Transition-state theory.
    Krupka RM
    J Membr Biol; 1989 Jul; 109(2):151-8. PubMed ID: 2769738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized kinetic analysis of ion-driven cotransport systems: II. Random ligand binding as a simple explanation for non-michaelian kinetics.
    Sanders D
    J Membr Biol; 1986; 90(1):67-87. PubMed ID: 2422385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic evidence for a common binding site for substrates and inhibitors of the neuronal noradrenaline carrier.
    Schömig E; Körber M; Bönisch H
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Jun; 337(6):626-32. PubMed ID: 2851105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Leucine transport in human red blood cells: a detailed kinetic analysis.
    Rosenberg R
    J Membr Biol; 1981; 62(1-2):79-93. PubMed ID: 7277478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinetics of transport inhibition by noncompetitive inhibitors.
    Krupka RM
    J Membr Biol; 1983; 74(3):175-82. PubMed ID: 6887230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for the facilitated diffusion of substrates across cell membranes.
    Carruthers A
    Biochemistry; 1991 Apr; 30(16):3898-906. PubMed ID: 2018761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General rate equations and rejection criteria for the rapid equilibrium carrier model of cotransport.
    Turner RJ
    Biochim Biophys Acta; 1982 Aug; 689(3):444-50. PubMed ID: 7126559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach in the kinetics of biological transport. The potential of reversible inhibition studies.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jun; 510(1):186-200. PubMed ID: 667035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers.
    Ginsburg H
    Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the simple carrier using irreversible inhibitors.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1976 Dec; 455(3):913-27. PubMed ID: 999944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling mechanisms in active transport.
    Krupka RM
    Biochim Biophys Acta; 1993 Nov; 1183(1):105-13. PubMed ID: 8399371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of chemical reactions catalysed by membrane-bound enzymes. Determination and significance of the kinetic constants.
    Heirwegh KP; Meuwissen JA; Van den Steen P; De Smedt H
    Biochim Biophys Acta; 1989 Apr; 995(2):151-9. PubMed ID: 2930793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing transport models and transport data by means of kinetic rejection criteria.
    Krupka RM
    Biochem J; 1989 Jun; 260(3):885-91. PubMed ID: 2764910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic evidence for the uniport mechanism hypothesis in the mitochondrial tricarboxylate transport system.
    De Palma A; Prezioso G; Scalera V
    J Bioenerg Biomembr; 2005 Oct; 37(5):279-87. PubMed ID: 16341772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.